Math, asked by smthrswm, 3 months ago

the
10. Find the mode of
distribution table
fuequency
C. I
0-10
10-20 20-30 30 40
f
2
3
5
2​

Answers

Answered by Anonymous
37

Question:-

Find the mode of the following data:-

\boxed{\begin{array}{c|c} \bf{Class} & \bf{Frequency} \\ \dfrac{\qquad\qquad}{} & \dfrac{\qquad\qquad}{} \\ \sf{0-10} & \sf{2} \\ \sf{10-20} & \sf{3} \\ \sf{20-30} & \sf{5} \\ \sf{30-40} & \sf{2}\end{array}}

Solution:-

Let us find the modal class of the given data.

We know:-

\sf{\red{\underline{Modal\:class:-}}}

  • The class with highest frequency is known as the modal class.

Here,

Class 20-30 has the highest frequency of 5. Hence, it is the modal class of the given data.

Now,

We know,

  • \dag{\boxed{\underline{\blue{\rm{Mode = l + \dfrac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h}}}}}

Where:-

  • l = lower limit of the modal class
  • h = height of the class
  • f₀ = frequency of the preceding class
  • f₁ = frequency of the modal class
  • f₂ = frequency of the succeeding class.

Here:-

  • l = 20
  • h = 30 - 20 = 10
  • f₀ = 3
  • f₁ = 5
  • f₂ = 2

Putting all the values in the formula:-

 \sf{Mode = 20 + \dfrac{5 - 3}{2 \times 5 - 3 - 2} \times 10}

 = \sf{Mode = 20 + \dfrac{2}{10 - 5} \times10 }

 = \sf{Mode = 20 + \dfrac{2}{5} \times 10}

 = \sf{Mode = 20 + \dfrac{2}{\not{5}} \times \not{10}}

 = \sf{Mode = 20 + 2 + 2}

 = \sf{Mode = 24}

\underline{\overline{\boxed{\green{\sf{\therefore\:The\:mode\:of\:the\:following\:data\:is\:24}}}}}

______________________________________

Similar questions