Math, asked by syed24002, 10 months ago

the 10th term and the 18 term of an A.P are 25 and 41 respectively find the 1term and the common difference and the 34th term and n such that tn=87​

Answers

Answered by Alcaa
1

Answer:

First term = 7

Common Difference = 2

34th term = 73

n = 41 if tn=87

Step-by-step explanation:

We are given that 10th term and the 18 term of an A.P are 25 and 41 respectively i.e.,

              a_1_0 = 25                                              a_1_8 = 41

     ⇒ a + (10 - 1 )*d = 25                             ⇒ a + (18 - 1 )*d = 41

Here, a = first term and d = common difference.

     ⇒ a + 9*d = 25                                       ⇒ a + 17*d = 41

     ⇒  a = 25 - 9*d -------- [Equation 1]        ⇒  a = 41 - 17*d ------- [Equation 2]

Equating equation 1 and 2 we get,

         ⇒  25 - 9*d = 41 - 17*d

         ⇒   17*d - 9*d = 41 - 25      ⇒ 8*d = 16

Therefore, common difference,d = 2     and    First term,a = 25 - 9*2 = 7

34th term,a_3_4 = a + (34 - 1 )*d = 7 + 33*2 = 73 .

Also, we are given t_n = 87 and we have to find n ;

            ⇒  a + (n-1)*d = 87  

            ⇒  7 + (n-1)*2 = 87

            ⇒ (n-1)*2 = 80    ⇒  n - 1 = 40

Therefore, n = 41 if t_n = 87 .

Similar questions