the 10th term and the 18th term of an A.P.are 25 and 41 respectively . find 1) the 1st term and the common difference 2) the 34th term 3) n such that tn= 87
Answers
Step-by-step explanation:
Let a is first term and d is common difference of an A.P.
tn=a+(n-1)d
t10=a+(10-1)d
25=a+9d
a+9d=25..... (1)
tn=a+(n-1)d
t18=a+(18-1)d
41=a+17d
a+17d=41.... (2)
Subtracting equation(1)from(2)
a+9d=25
- a+17d=41
- - -
----------------------
-8d= -16
d= -16/-8
d= 2
Put d=2 in equation (1)
a+9d=25
a+9(2)=25
a+18=25
a=25-18
a=7
1) First term=a
=7
Common difference=d=2
2) tn=a+(n-1)d
t34=7+(34-1)2
t34=7+35×2
t34=7+70
t34=77
The 34th term is 77.
3) tn=a+(n-1)d
87=7+(n-1)2
87-7=2n-2
80=2n-2
80+2=2n
82=2n
n=82/2
n=41
Step-by-step explanation:
T10=25
T18=41
1)the 1st term and the common difference
a=?,d=?
d=T18-T10
18-10 T18=41
a+17d=41
=41-25 a+17×2=41 . 8 a + 34 = 41
a=41-34
=16 a=7
8
d=2
2)the34th term
T34=?
Tn =a+(n-1)d
T34=7+(34-1)2
T34= 7+33×2
T34=7×66
T34=5082
3)n such that Tn=87
Tn=a+(n-1)d
87=7+(n-1)2
87=7+2n-2
87=5+2n
87-5=2n
82=2n
n=82
2
n=41
T41=82