Math, asked by siddurevana1985, 2 months ago

The 10th
term of an AP is 52 and 16th term is
82 then find the 32nd
term​

Answers

Answered by Anonymous
29

Answer:

{ \huge{ \rm{ \red{Solution:}}}}

From Question,

  • 10th term in AP = 52
  • a + 9d = 52....(1)

  • 16th term in AP = 82
  • a + 15d = 82....(2)

By subtracting equation 1 & 2,

 : { \implies{ \sf{a + 9d - (a + 15d) = 52 - 82}}} \\  \\ :  { \implies{ \sf{a + 9d - a - 15d =  - 30}}} \\  \\  : { \implies{ \sf{{ \cancel{a}} + 9d  - \: { \cancel{ a}} - 15d =  - 30}}} \\  \\   : { \implies{ \sf{9d - 15d =  - 30}}} \\  \\ : { \implies{ \sf{ - 6d =  - 30}}} \\  \\ : { \implies{ \sf{ d = \frac{ - 30}{ - 6}  }}}  \\  \\ : { \implies{ \sf{d = 5}}}

Now, Substitute d value in equation 1,

 \: : { \implies{ \sf{a + 9d = 52}}} \\  \\ : { \implies{ \sf{a + 9 \times 5 = 52}}} \\  \\ : { \implies{ \sf{a + 45 = 52}}} \\  \\ : { \implies{ \sf{a = 52 - 45}}} \\  \\ : { \implies{ \sf{a = 7}}}

So, Value of a = 7 , d = 5

Let's Find 32nd term:-

 \:: { \implies{ \sf{ a_{32} = a + 31d }}}  \\  \\  : { \implies{ \sf{a_{32} = 7 + 31(5)}}} \\  \\  : { \implies{ \sf{a_{32} = 7 + 155}}} \\  \\ :  { \implies{ \sf{a_{32} = 162}}}

{ \therefore{ \underline{  \pink{ \sf{32nd \:  term \:  of  \: AP \:  is \:  162}}}}}

Similar questions