Math, asked by pagddrawings, 4 months ago

The 10th term of an arithmetic series, S is 66
The sum of the first 20 terms of is S 1290

Answers

Answered by MotiSani
1

The question given here is incomplete. The correct question is given below-

"The 10th term of an arithmetic series, S is 66. The sum of the first 20 terms of S is 1290. Find the 5th term of the series."

Given:-

a_{10} = 66

S_{20} = 1290

To find:-

The value of a_{5}

Solution:-

We know that,

a_{n} = a + (n-1)d

a_{10} = a +(10 - 1)d

    = a + (9)d

66 = a + 9d                                                  (using the value  a_{10} as given)

a = 66 - 9d                                                     (1)

Now,

S_{20} = \frac{n}{2} ×(2a + (n - 1)d)

1290 = \frac{20}{2} ×(2a + ( 20 - 1)d)

1290 = 10 × (2a + 19d)

129 = 2a + 19d

129 = 2 (66 - 9d) + 19d                               (substituting the value of 1 here)

129 = 132 - 18d + 19d

129 - 132 = d

d = -3                                                  (2)

Using the value of d in equation 1,

a = 66 - 9d

a = 66 - 9 (-3)

a = 66 + 27

a = 93

Now,

a₅ = a + (n - 1)d

a₅ = 93 + (5 - 1) × -3

a₅ = 93 -12

a₅ = 81

Hence, a_{5} = 81

#SPJ1

Similar questions