Math, asked by nlvraghavendra5992, 8 months ago

The 10th term of the AP 1,3/2,2,5/2 ...... is *

Answers

Answered by amansharma264
3

 \large \orange{answer} \\  \\ \large \implies{t \: 10 =  \frac{11}{2} } \\  \\ \large \implies{ \underline{given}} \\  \\ \large \implies{ap \:  =  \: 1 +  \frac{3}{2} + 2 +  \frac{5}{2} ...... \: n \: terms } \\  \\ \large \implies \underline{find \:  \: 10 \: terms} \\  \\ \large \implies \underline{ solutions} \\  \\ \large \implies{first \:  \: term \:  \: a = 1} \\  \\ \large \implies{common \:  \: difference \:  \: d \:  =  \frac{3}{2} - 1 =  \frac{1}{2}  } \\  \\ \large \implies{t \: 10  \: terms \:  = a + 9d} \\  \\ \large \implies{1 + 9  \times  \frac{1}{2}  } \\  \\ \large \implies \therefore{t \: 10 =  \frac{11}{2} }

Answered by Anonymous
0

QUESTION:

The 10th term of the AP 1,3/2,2,5/2 ...... is *

FORMULA USED :

</u><u>\</u><u>h</u><u>u</u><u>g</u><u>e</u><u>\</u><u>o</u><u>r</u><u>a</u><u>n</u><u>g</u><u>e</u><u> </u><u>{</u><u>nth \: term = a + (n - 1)d</u><u>}</u><u>

where;

a = first term

d = common difference

Now come to main question;

AP :

\red {1... \frac{3}{2} ....2.... \frac{5}{2}}

here;

first term = 1

common difference = 3/2 - 1

=3-2 /2

= 1/2

Using the formula;

\blue {t(10) = 1 + (10 - 1) \times  \frac{1}{2}  </p><p>}

 t(10) = 1 + 9 \times  \frac{1}{2}  \\ t(10) = 1 +  \frac{9}{2}  \\ t(10) =  \frac{2 + 9}{2}  \\ t(10) =  \frac{11}{2}

\huge\purple {10th \: term =  \frac{11}{2} }

Similar questions