Math, asked by sanikagaware30, 5 hours ago

the 11th term & 21th terms of an A.P are 16 and 29 respectively, then find the 37th term . also find 'n' if nth term is 55​

Answers

Answered by kadeejasana2543
0

Answer:

Step-by-step explanation:

We know the general term of an AP is a_{n} =a+(n-1)d.

Given 11^{th} term   a_{11} =a+10d=16 . . . . (1)

and 21^{st} term      a_{21} =a+20d=29 . . . . (2)

We are asked to find the 37^{th} term. So, equation (2)-(1) will give the value of d,  substitute it in to any of these two equations, we get the value of a.

and hence find the 37^{th} term.  So,

(2)-(1) ⇒

                 a+20d=29\ -\\\\a+10d=16

        ⇒      

                      10d=13\\\\d=13/10

applying  the value of  d in (1),

                 a+10(\frac{13}{10} )=16\\\\a+13=16\\\\a=16-13=3

Therefore  37^{th} term  a_{37}=a+36d=3+36(\frac{13}{10} )

                                         =3+36(1.3)=49.8

Hence the answer.

Also we want to find n such that   a_{n} =55

That is     a+(n-1)d=3+(n-1)\frac{13}{10} =55

                                    =3+\frac{13n}{10} -\frac{13}{10}\\\\  =55

                            ⇒

                                       \frac{13n}{10}- \frac{13}{10}=55-3=52\\\\13n-13=52*10=520

                                       13n=520+13=533\\ \\n=533/13=41

Therefore it is the 41^{th} term.

Hence the answer.

thank you

Similar questions