Math, asked by bindushyjan7, 9 months ago

The 11th term of an arithmetic sequence is 75. Find the sum of first 21 terms of the sequence​

Answers

Answered by worldxyzabc
3

Answer:1575

Step-by-step explanation:

a11 = 75 => a+10d=75

Sn = n[2a+(n-1)d]/2

S21 = 21[2a+20d]/2 = 21*2(a+10d)/2 = 21(a+10d) = 21*75 = 1575.

Hope this helps you!

Answered by BrainlyPopularman
8

{ \bold{ \green{ \underline{  \underline{ Answer }} :  - }}} \\  \\Sum = 1575  \\  \\ { \bold{ \green{ \underline{ \underline{step -   by -step \:  \: explanation }} :  - }}} \\  \\ { \bold {\underline{ Given } :  - }}  \\ \\  { \bold{ \blue{ \:  \:  \:   \:  \:  \:  \:  \:  \:   \:  \: \: . \:  \:  11 \:  \: th \:  \: term \:  \: of \:  \: a.p. = 75}}} \\  \\ { \bold{ \underline{ To  \:  \: find } :  - }} \\  \\ { \bold{ \blue{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: . \:  \: sum \:  \: of \:  \: first \:  \: 21 \:  \: term \:  \: of \:  \: a.p.}}} \\  \\ { \bold{ \underline{ \red{solution}} : -  }} \\  \\ { \bold{ \orange{ \implies \: \: 11 \:  \: th \:  \: term \:  \: of \:  \: a.p. = 75 }}} \\  \\ { \bold{ \orange{ \implies \:  \: a + 10d = 75}}}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: .........(1) \\  \\ { \bold{ \orange{ \implies \: sum \:  \: of \:  \: first \:  \: 21 \:  \: term =  \frac{n}{2}(2a + 20d) }}} \\  \\ { \bold{ \orange{ \implies \: sum = \frac{21}{2}(2)(a + 10d)  }}} \\  \\ { \bold{ \blue{ \:  \:  \:  \:  \:  \:  . \:  \: now \:  \: use \:  \: equation \: (1) \:  - }}} \\  \\ { \bold{ \orange{ \implies \:sum =  \frac{21}{2 }   \times 2 \times 75}}} \\  \\ { \bold{ \orange{ \implies \: { \boxed{sum = 1575}}}}} \\  \\  \\{ \bold{ \red{ { \huge{\underline{used \:  \: formula} :  - }}}}} \\  \\ { \bold{ \blue{ \:  \: (1) \:  \:  T_{n} = a + (n - 1)d}}} \\  \\ { \bold{ \blue{ \:  \: (2) \:  \:sum \:  \: of \:  \: a.p. =  \frac{n}{2} [2a + (n - 1)d]}}}

Similar questions