Math, asked by yasmeenchoudhary104, 4 months ago

The 11th term of the AP = √2, 3√2, 5√2, ...... is *​

Answers

Answered by Anonymous
16

Answer:

\huge{\underline{\underline{\tt{\redſ.Question}}}}

The 11th term of the AP = √2, 3√2, 5√2, ...... is 

\huge{\underline{\underline{\tt{\blueſ.Answer}}}}

\huge{\underline{\underline{\tt{\pinkſ.Given\ series\ is:}}}}

√2,3√2,5√2,.....

We know that tn=a+(n-1)d

Thus a=√2, d=2√2

\huge{\underline{\underline{\tt{\blueſ.Therefore}}}}

t11=√2+(11-1)2√2

=√2+(10)2√2

=√2+20√2

=21√2

Therefore 11th term is

\huge{\underline{\underline{\tt{\greenſ.=21√2}}}}

Answered by Anonymous
5

 \bf \large{ \underline{ \underline{ \pink{Given : }}}}

 \bf \small{AP}  \sf \small {:  \sqrt{2} ,\: 3 \sqrt{2}, \: 5 \sqrt{2}... }

 \bf \large { \underline { \underline{ \red{Required \: answer : }}}}

 \bf \small{The \:  {11}^{th} term \: of \: the \: given \: AP.}

 \bf \large { \underline{ \underline{ \green{Solution : }}}}

We have,

 \bf \small{a} \sf \small{ =  \sqrt{2} }

 \bf \small{d} \sf \small{ = 3 \sqrt{2}  -  \sqrt{2}  = 2 \sqrt{2} }

 \bf \small{n = } \sf \small{11}

 \bf \small{a11 = } \sf \small{a + 10d =  \sqrt{2}  + 10 \sqrt{2} }

 \implies \bf \small{a11 = } \sf \small{11 \sqrt{2} }

 \bf \large { \underline{ \underline{ \blue{Formula \: used : }}}}

 \bf \small{a_n = } \sf \small{a + (n - 1)d}

Similar questions