Math, asked by ayush3486, 1 year ago

the 12th term of an A.P is 14 more than the 5th term . the sum of these terms is 36 Find the A.P​

Answers

Answered by Anonymous
2

Answer:

Step-by-step explanation:

Attachments:

ayush3486: thanku sir for help
Anonymous: ok welcome
Answered by Yugant1913
10

Answer:

\huge\sf\mathbb\color{darkgreen} \underline{\colorbox{lightgreen}{☠⚡answer⚡☠}}

Step-by-step explanation:

Let, progression has first term a and common difference d.

First case,

 \:  \:  \:  \: \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  a_{12} =  a_{5} + 14

⟹ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: a + 11d = a + 4d + 14 \\

⟹ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 11d  - 4d = 14

⟹ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 7d = 14

∴ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: d =  \frac{14}{7}  = 2 \\

Second case,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  a_{12} +  a_{5}  = 36

⟹ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: a + 11d + a + 4d = 36

⟹ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 2a + 15d = 36

On subsisting value of d,

⟹ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 2a + 15 \times 2 = 36

⟹ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 2a = 36 - 30

∴ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: a =  \frac{6}{2} = 3 \\

Therefore, \:  {m}^{th} \:  term \:  a_{m} \:  = a + (m - 1)d \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 3 + (m - 1) \times 2

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 3 + 2m - 2

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 2m + 1. \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: answer \\

Similar questions