Math, asked by AlmeenAnsari8304, 11 months ago

The 13th of an AP is 3 and the sum of first 13 terms is 234. FIND the common difference and the sum of first 21 terms

Answers

Answered by Alcaa
15

Answer:

Common difference = -2.5 and the sum of first 21 terms = 168 .

Step-by-step explanation:

We are given that the 13th of an AP is 3 and the sum of first 13 terms is 234.

Let the first term of an AP be denoted by a and common difference by d.

So, 13th of an AP is 3 which means;

               ⇒ a_1_3 = 3   ⇒ a + (13 - 1)*d = 3  {\because a_n = a + (n-1)d }

                                 ⇒ a + 12*d = 3

                                 ⇒ a = 3 - 12*d ------------ [Equation 1]

Also, sum of first 13 terms is 234 which means;

              ⇒ S_1_3 = 234  ⇒  \frac{13}{2}[2a + (13-1)d] = 234 {\because S_n = \frac{n}{2}[2a+(n-1)d] }

                                    ⇒  2a + 12d = \frac{234*2}{13}

                                    ⇒ 2*(3 - 12*d) +12*d = 36 {taking value of a from eq 1}

                                    ⇒ 6 - 24*d + 12*d = 36

                                    ⇒ 6 - 12*d = 36

                                     ⇒ d = \frac{30}{-12} = -2.5

Now, putting value of d in equation 1 we get;

             ⇒ a = 3 - 12*(-2.5) = 3 + 30 = 33

Therefore, first term, a = 33 and common difference = -2.5 .

Also, sum of first 21 terms, S_2_1 = \frac{21}{2} [2*33 + (21-1)*(-2.5)]        

                                                  = \frac{21}{2} [66 - 50] = 168 .

Therefore, sum of first 21 terms = 168.                                        

                 

Answered by saitamasriram
2

Answer:

Common Difference is 2.5

Sum of first 21 terms is 168

Step-by-step explanation:

God Dammit just read the previous answer to this question .Jeez why do people even scroll after reading the correct answer

Similar questions