Math, asked by harikaakhila311, 1 year ago

The 13th term of a G.P are respectively equal to 24 and 3/16 find the series and 25th term

Answers

Answered by NeelamG
9

a {r}^{n - 1}  = an

6th term is 24

a {r}^{6 - 1}  = 24 \\  \\ a {r}^{5}  = 24........(1) \\  \\ a  {r}^{13 - 1}  =  \frac{3}{16}  \\  \:  \\ a {r}^{12}  =  \frac{3}{16} ........(2) \\ \\ divided \: (2) \: by \: (1) \\   \\ \frac{a {r}^{12} }{a {r}^{5} }  =  \frac{ \frac{3 }{16} }{24}  \\  \\  {r}^{7 }  =  \frac{3}{16}  \times  \frac{1}{24}  \\  \\  {r}^{7}  =  \frac{1}{128}  \\  \\  {r}^{7}  = ( { \frac{1}{2} })^{7}  \\  \\ r =  \frac{1}{2}

put this value of r in (1)

a ({ \frac{1}{2} })^{5}  = 24 \\  \\ a = 24 \times  {2}^{5}  \\  \\ a = 768 \\  \\

hence the series is 768,384,192,128,64,24.........


NeelamG: i hope it will help u....
Ritiksuglan: hiii
NeelamG: hlo
NeelamG: hloo
Ritiksuglan: hii
NeelamG: hii
Similar questions