Math, asked by VijayaLaxmiMehra1, 1 year ago

The 16th term of an AP is 1 more than twice its 8th term. If the 12th term of the AP is 47 then find its nth term.

Answers

Answered by sanjeevnichaudhary
49
given,
a + 15d = 1 + 2(a + 7d)
a + 15d = 1+ 2a + 14d
a-d = -1. [1]

a + 11d = 47. [2]
by elimination method , we get d = 4 and a = 3

an= a + (n-1)d
an = 3 + ( n-1 ) 4
an = 3 + 4n -4
an = 4n -1
here is your answer....
hope it helps uu........

anshika245: nice
sanjeevnichaudhary: thanx
sanojkumar82: ok
Answered by Anonymous
74

\underline{\mathfrak{Solution : }}


\mathsf{Formula \: to \: be \: used : } \\ \\<br /><br />\boxed{\mathsf{\implies T_{n} \: = \: a \: + \: ( n \: - \: 1 )d }}


 \underline{\mathsf{Case \: 1 ,}}


\mathsf{\implies T_{16} \: = \: 2 \:  \times  \: T_{8} \: +  \: 1}  \\  \\  \mathsf{ \implies a \:  +  \: (16 \:   -  \: 1)d \:  =  \: 2[a \: + \: ( 8 \: - \:1)d ] \:  +  \: 1} \\  \\  \mathsf{ \implies a \:  +  \: 15d \:  =  \: 2(a \:  +  \: 7d) \:  +  \: 1} \\  \\  \mathsf{ \implies  a \:  +  \: 15d \:  =  \: 2a \:  +  \: 14d \:  +  \: 1} \\  \\  \mathsf{ \implies 15d \:  -  \: 14d  \:  =  \: 2a \:  -  \: a \:  +  \: 1} \\  \\  \mathsf{ \implies d \:    =  \: a \:  +  \: 1 \qquad...(1)}


\underline{\mathsf{Case \: 2 , }}

\mathsf{\implies T_{12} \: = \: 47 } \\ \\<br /><br />\mathsf{\implies a \: + \: ( 12 \: - \: 1)d \: = \: 47 } \\ \\<br /><br />\mathsf{\implies a \: + \: 11d \: = \: 47 } \\ \\<br /><br />\mathsf{\therefore \quad a \: = \: 47 \: - \: 11d \qquad(2) } \\ \\<br /><br />\mathsf{Plug \:the \: value \: of \: ( 2 ) \: in \: (1)}<br />


\mathsf{\implies d \: = \: a \: + \: 1 } \\ \\<br />\mathsf{\implies d \: = \: 47 \: - \:11d \: + \: 1} \\ \\<br />\mathsf{\implies d \: + \: 11d \: = \: 47 \: + \: 1} \\ \\<br />\mathsf{\implies 12d \: = \: 48} \\ \\<br />\mathsf{\implies d \: = \: \dfrac{48}{12}} \\ \\<br /><br />\mathsf{\therefore \quad d \: = \: 4 }<br />

\mathsf{Plug \: the \: value \: of \: \textbf{d} \: in \: (1),} \\ \\<br /><br />\mathsf{\implies 4 \: = \: a \: + \: 1} \\ \\<br /><br />\mathsf{\implies 4 \: - \:1 \: = \: a } \\ \\<br /><br />\mathsf{\implies 3 \: = \: a } \\ \\<br /><br />\mathsf{\therefore \quad a \: = \: 3 }<br />


\mathsf{Now,} \\ \\<br /><br />\mathsf{\implies T_{n} \: = \: a \: + \: ( n \: - \: 1)d} \\ \\<br /><br />\mathsf{Plug \: the \: value \: of \: \textbf{a} \: and \: \textbf{d},}


\mathsf{\implies T_{n} \: = \: 3 \: + \:( n \: - \: 1)4} \\ \\<br /><br />\mathsf{\implies T_{n} \: = \: 3 \: + \: 4n \: - \:4 } \\ \\<br /><br />\mathsf{\implies T_{n} \: = \: 4n \: - \: 4 \: + \: 3} \\ \\<br /><br />\mathsf{\therefore \quad T_{n} = \: 4n \: - \: 1 }

DevilDoll12: Gr8✌
Anonymous: Thankaa !!
DevilDoll12: Wello
Anonymous: nice awesome super well define answer
Anonymous: keep ir up
Anonymous: it*
Similar questions