Math, asked by simm977, 1 year ago

THE 17TH TERM OF AN A.P.EXCEEDS ITS 10TH TERM BY 7.FIND THE COMMON DIFFERENCE?

Answers

Answered by Anonymous
2

☺ Hello mate__ ❤

◾◾here is your answer...

Given, 17th term exceeds its 10th term by 7.

It means a17 = a10 + 7         ........eq(1)

Here, a17 is the 17th term and a10 is the 10th term of an AP.

Using formula an=a+(n−1)d,   to find nth term of arithmetic progression, we get

a17=a+(16)d      ..........eq (2)

a10=a+(9)d    .........eq(3)

Putting (2) and (3) in equation (1), we get

a+16d=a+9d+7

⇒7d=7

⇒d=7/7=1

I hope, this will help you.

Thank you______❤

✿┅═══❁✿ Be Brainly✿❁═══┅✿

Answered by vashushubu77
1

{\underline{\underline{\frak{Given\::}}}}\\ \\

17TH Term is AP is 7 More Than 10TH Term...

{\underline{\underline{\frak{To\:Find\::}}}}\\ \\

Common difference?

⠀⠀⠀

{\underline{\underline{\frak{Solution\::}}}}\\ \\

\underline{\bigstar\:\boldsymbol{According\:to\:the\: Question\::}}\\ \\

:\implies\sf a_{17} = a_{10} + 7\\ \\

:\implies\sf a + 16d = a + 9d + 7\\ \\

:\implies\sf 16d = 9d + 7\\ \\

:\implies\sf 16d - 9d = 7\\ \\

:\implies\sf 7d = 7\\ \\

:\implies\sf d = \cancel{ \dfrac{7}{7}}\\ \\

:\implies{\boxed{\sf{\purple{d = 1}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Hence,\;Common\; difference\;of\;an\;AP\:is\; \bf{1}.}}}

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\qquad\qquad\boxed{\underline{\underline{\bigstar \: \bf\:Formula\:Related\:to\:AP\:\bigstar}}}

⠀⠀⠀⠀⠀⠀⠀

\sf (i)\;The\; n^{th}\;term\;of\;an\;AP\; = \; \red{a_n + (n - 1)d}

⠀⠀⠀⠀⠀⠀⠀

\sf (ii)\;Sum\;of\;n\;term\;of\;an\;AP\; = \; \purple{S_n = \dfrac{n}{2} \bigg\lgroup\sf 2a + (n - 1)d \bigg\rgroup}

⠀⠀⠀⠀⠀⠀⠀

\sf (iii)\;Sum\;of\;all\;terms\;of\;AP\;having\;last\:term\;as\;'l'\; = \; \pink{ \dfrac{n}{2}(a + l)}[/tex]

Hope iT helps

Similar questions