Math, asked by ananayagupta, 10 months ago

The 17th term of an ap is 5 more than twice its 8th term if the 11th of the ap is 43 find its NH term.​

Answers

Answered by sahilsinghrathore04
0

Step-by-step explanation:

a17 = 5+2(a8)

a11 = 43

a+10d = 43 ...(i)

a+16d = 5+ 2( a+7d)

a+16d= 5+ 2a +14d

-a + 2d = 5 ...(ii)

after solving the equation we get

8d= 38

d=38/8

put the value of the in equation 1 or 2 and you will get the value of a

Answered by Rohit57RA
0

✤ Required Answer:

✒ GiveN:

17th term of an AP is 5 more than twice of 8th term.

11th term is 43

✒ To FinD:

Find its 15th term....?

━━━━━━━━━━━━━━━━━━━━

✤ How to solve?

For the above question, We need to know the formula of nth term of an AP, That is:

\large{ \boxed{ \sf{a_n = a + (n - 1)d}}}

a

n

=a+(n−1)d

Here, an is the last term, a is the first term, n is the no. of terms and d is the common difference. ☃️ So, let's solve this question...

━━━━━━━━━━━━━━━━━━━━

✤ Solution:

By using the above formula,

a17 = a + 16d

a8 = a + 7d

a11 = a + 10d

According to condition-1)

➝ a17 = 2a8 + 5

➝ a + 16d = 2(a + 7d) + 5

➝ a + 16d = 2a + 14d + 5

➝ a - 2a + 16d - 14d = 5

➝ - a + 2d = 5

➝ - a = 5 - 2d

➝ a = 2d - 5.........(1)

According to condition-2)

➝ a11 = 43

➝ a + 10d = 43

Substituting value of a in this eq.

➝ 2d - 5 + 10d = 43

➝ 12d - 5 = 43

➝ 12d = 48

➝ d = 48/12

➝ d = 4

Putting the value of d in eq.(1),

➝ a = 2(4) - 5

➝ a = 8 - 5

➝ a = 3

We have to find, a15

➝ a15 = a + 14d

➝ a15 = 3 + 14(4)

➝ a15 = 3 + 56

➝ a15 = 59

☀️ 15th term of the AP = 59

━━━━━━━━━━━━━━━━━━━

Similar questions