Math, asked by khajashfaq1636, 1 year ago

The 17th term of an ap is 5more than twice its 8th term if 11 th term of ap is 43 find nth term

Answers

Answered by Anonymous
10
Hi Friend,

a₁₇ = 5 + 2a₈                  and a₁₁ = 43 
APPLY THE NTH TERM FORMULA =  a + (n-1) d    where  a = first term  d = common difference of A.P
                                                  
THERFORE, 

           a + (17  - 1) d  =  5 + 2{ a + (8 - 1 ) d}  

           a + 16 d =  5 + 2a + 14d        2d - a = 5        .......(1)

      a + (11 - 1)d = 43             
a + 10d = 43        .........(2)


SOLVE 1 AND 2     12d = 48              
d = 4 


 a=3



Hope it helps you!!!
Answered by llTheUnkownStarll
4

Given: 

  • The 17th Term of an AP is five more than twice the 8th term of the AP. & The 11th term of the AP is 43.

To find: 

  • The first term (a) & the Common difference ( d )?

⠀⠀

Solution:

◕ By using formula = ⟩⟩ aₙ = a + (n – 1) d ⟨⟨

» 8th term of AP —

\begin{gathered}\longrightarrow\bf a_8 = a + 7d\qquad\qquad\quad\sf\Bigg\lgroup eq^{n}\;(1)\Bigg\rgroup\\\\\end{gathered}

» 17th term of AP —

\begin{gathered}\longrightarrow\bf a_{17} = a + 16d\qquad\qquad\quad\sf\Bigg\lgroup eq^{n}\;(2)\Bigg\rgroup\\\\\end{gathered}

\begin{gathered}\underline{\maltese \:\boldsymbol{\sf{According\;to\;the\; Question\; :}}}\\\\\end{gathered}

  • It is Given that, 17th term of the AP is five more than twice the 8th term of the AP.

\begin{gathered}:\implies\sf a_{17} = 2(a_8) +5\\\\\\\end{gathered}

\begin{gathered}:\implies\sf a + 16d = 2(a + 7d) + 5\qquad\qquad\quad\sf\Bigg\lgroup Using\;eq^{n}\;(1)\:\&\;eq^{n}\;(2)\Bigg\rgroup\\\\\\\end{gathered}

\begin{gathered}:\implies\sf a + 16d = 2a + 14d + 5\\\\\\\end{gathered}

\begin{gathered}:\implies\sf 2a - a = 16d - 14d - 5\\\\\\\end{gathered}

\begin{gathered}:\implies\boxed{\frak{a = 2d -5}}\blue\bigstar \qquad\qquad\quad\quad\sf\Bigg\lgroup eq^{n}\;(3)\Bigg\rgroup\\\\\\\end{gathered}

Second Condition:

  • As it is given that, 11th term of the AP is 43.⠀

\begin{gathered}:\implies\sf a_{11} = a + (11 - 1)d\\\\\\\end{gathered}

\begin{gathered}:\implies\sf 43 = a + 10d\\\\\\\end{gathered}

\begin{gathered}:\implies\sf 43 = 2d - 5 10d\qquad\qquad\quad\quad\sf\Bigg\lgroup From\;eq^{n}\;(3)\Bigg\rgroup\\\\\\\end{gathered}\begin{gathered}:\implies\sf 12d = 43 + 5\\\\\\\end{gathered} \\ \begin{gathered}:\implies\sf 12d = 48\\\\\\\end{gathered} \\ \begin{gathered}:\implies\sf d = \cancel\dfrac{48}{12}\\\\\\\end{gathered}

\begin{gathered}:\implies{\underline{\boxed{\frak{ d = 4}}}}\pink\bigstar\\\\\end{gathered}

  • Hence, the term is 4

Thank you!!

@itzshivani

Similar questions