Math, asked by akshaykl40, 9 months ago

The 18th term of an arithmetic sequence with common difference 4 is 23.What is its 23rd term​

Answers

Answered by atahrv
4

Answer :

\large{\dag\:\boxed{\star\:\:a_{23}\:=\:43\:\:\star}\:\dag}

Explanation :

Given :–

  • a₁₈ = 23 (18th Term is 23.)
  • d = 4 (Common Difference is 4. )

To Find :–

  • a₂₃ (23rd Term of this A.P.)

Formula Applied :–

  • \boxed{\bf{\star\:\:a_n\:=\:a\:+\:(n\:-\:1)d\:\:\star}}

Solution :–

We have a₁₈ = 23 and d = 4 .

\rightarrow\sf{a_{18}\:=\:23}

\rightarrow\sf{a_{18}\:=\:a\:+\:(18\:-\:1)d}

\rightarrow\sf{23\:=\:a\:+\:(17\:\times\:4)}

\rightarrow\sf{23\:=\:a\:+\:68}

\rightarrow\sf{a\:=\:23\:-\:68}

\rightarrow\bf{a\:=\:(-45)}

Now , we have , a = (-45) , d = 4  and n = 23 .

Putting these values in the Formula :

\rightarrow\sf{a_n\:=\:a\:+\:(n\:-\:1)d}

\rightarrow\sf{a_{23}\:=\:(-45)\:+\:(23\:-\:1)(4)}

\rightarrow\sf{a_{23}\:=\:(-45)\:+\:(22\:\times\:4)}

\rightarrow\sf{a_{23}\:=\:(-45)\:+\:88}

\rightarrow\boxed{\bf{a_{23}\:=\:43}}

23rd Term of this A.P. is 43 .

Similar questions