Math, asked by pingleadarsh, 1 year ago

the 19 term of A.p is equal to 3 times its terms. if 9 term of A.p of is 19 . find A.p​

Answers

Answered by Anonymous
1

Step-by-step explanation:

Hey buddy let's solve this beautiful problem!!!!!

given \\ t19 = 3(t9) \\ t9 = 19

Ok, now let's try to frame equations.

t19 = 3(19) = 57

a + 18d = 57.......(1)

a + 8d = 19............(2)

So, let's solve (1)&(2)=>

10d = 38 \\ d = 3.8

now \: substitute \: them \: in \: one \: of \: the \: equations

a + 8(3.8) = 19 \\ a =  19 - 30.4 \\ so \: a = ( - 11.4)

so \: your \: required \: a.p \: is \:  \\ (a - d) \:  and\: a \:and \:  (a + d)

(a - d) = ( - 15.2) \\ (a + d) = ( - 7.6)

now \: we \: have \: completed \: this \: question \:  \\ required \: terms \:  =  \\ ( - 15.2) \:  \: ( - 11.4) \:  \: ( - 7.6)

Hope it helps uh!

Answered by silentlover45
6

\underline\mathfrak{Given:-}

  • 19th term of Ap is equal to three times of second term.
  • 9th term of Ap is 19

\underline\mathfrak{To \: \: Find:-}

  • Find the n .....?

\underline\mathfrak{Solutions:-}

\: \: \: \: \: {a_n} \: \: = \: \: {a} \: + \: {(n \: - \: {1})} \: d

  • a = first term
  • d = common difference
  • nth = number of term
  • an = last term

✰ 19th term of Ap is equal to three times of second term.

\: \: \: \: \: \leadsto \: \: {a} \: + \: {({19} \: - \: {1})} \: d \: \: = \: \: {3} \: {[{a} \: + \: {({2} \: - \: {1})} \: d]}

\: \: \: \: \: \leadsto \: \: {a} \: + \: {18d} \: \: = \: \: {3} \: {({a} \: + \: {d})}

\: \: \: \: \: \leadsto \: \: {a} \: + \: {18d} \: \: = \: \: {3a} \: + \: {3d}

\: \: \: \: \: \leadsto \: \: {18d} \: - \: {3d} \: \: = \: \: {3a} \: - \: {a}

\: \: \: \: \: \leadsto \: \: {15d} \: \: = \: \: {2a}

\: \: \: \: \: \leadsto \: \: {d} \: \: = \: \: \frac{2a}{15} \: \: \: \: \: ....{(i)}.

✰ 9th term of Ap is 19.

\: \: \: \: \: \leadsto \: \: {a} \: + \: {({9} \: - \: {1})} \: d \: \: = \: \: {19}

\: \: \: \: \: \leadsto \: \: {a} \: + \: {8d} \: \: = \: \: {19} \: \: \: \: \: ....{(ii)}.

»★ Solving the Eq. (i) and Eq. (ii).

\: \: \: \: \: \leadsto \: \: {a} \: + \: {8d}  \: \: = \: \: {19}

\: \: \: \: \: \leadsto \: \: {a} \: + \: {8} \: \times \: \frac{2a}{15}  \: \: = \: \: {19}

\: \: \: \: \: \leadsto \: \: {a} \: + \: \frac{16a}{15}  \: \: = \: \: {19}

\: \: \: \: \: \leadsto \: \: {(\frac{{15} \: + \: {16}}{15})} \: {a} \: \: = \: \: {19}

\: \: \: \: \: \leadsto \: \: \frac{31a}{15}  \: \: = \: \: {19}

\: \: \: \: \: \leadsto \: \: {31a} \: \: = \: \: {19} \: \times \: {15}

\: \: \: \: \: \leadsto \: \: {31a} \: \: = \: \: {285}

\: \: \: \: \: \leadsto \: \: {a}  \: \: = \: \: \frac{285}{31}

»★ Putting the value of a in Eq. (i).

\: \: \: \: \: \leadsto \: \: {d} \: \: = \: \: \frac{2a}{15}

\: \: \: \: \: \leadsto \: \: {d} \: \: = \: \: \frac{2}{15} \: \times \: \frac{285}{31}

\: \: \: \: \: \leadsto \: \: {d} \: \: = \: \: \frac{38}{31}

»★ Now, the Ap a, a + d and a + 2d

  • \: \: \: \: \: {a}  \: \: = \: \: \frac{285}{31}

  • \: \: \: \: \: {a} \: + \: {d} \: \: = \: \: \frac{285}{31} \: + \: \frac{38}{31} \: \: = \: \: \frac{{285} \: + \: {38}}{31} \: \: = \: \: \frac{285}{31}

  • \: \: \: \: \: {a} \: + \: {2d} \: \: = \: \: \frac{285}{31} \: + \: {2} \:  \times \: \frac{38}{31} \: \: = \: \: \frac{285}{31} \: + \: \frac{76}{31} \: \: = \: \: \frac{{285} \: + \: {76}}{31} \: \: = \: \: \frac{361}{31}

»★ Hence,

\: \: \: \: \: Ap \: \: is \: \: \frac{285}{31}, \: \: \frac{323}{31}, \: \: \frac{361}{31}

\underline\mathfrak{Important \: \: formula:-}

  • \: \: \: \: \: {A_n} \: \leadsto \: a \: + \: {({n} \: - {1})} \: d

\underline\mathfrak{more \: \: information:-}

  • \: \: \: \: \: \leadsto \: a \: \: = \:  \: first \: \: terms

  • \: \: \: \: \: \leadsto \: d \: \: = \:  \: common \: \: difference

  • \: \: \: \: \: \leadsto \: n \: \: = \:  \: number \: \: of \: \: terms.

  • \: \: \: \: \: \leadsto \: {a_n} \: \: = \: \: nth \: \: term

_________________________________

Similar questions