Math, asked by mandeep7157, 8 months ago

The 19 terms of an a.p is equal to three times it's second term .if it 9 term is 19.find the a.p

Answers

Answered by BrainlyPopularman
7

GIVEN :

19th term of A.P. = Three time of second term

• 9th term of A.P. = 19

TO FIND :

A.P. = ?

SOLUTION :

• We know that nth term –

  \\ \:   \longrightarrow \: \large { \boxed{  \sf  T_{n} \:  = a + (n - 1)d}} \\

• Here –

  \\ \: \:  \:  \:  \:  \: { \huge{.}} \:  \:  \:  \sf  T_{n} \:  = n \th \:  \: term \\

  \\ \: \:  \:  \:  \:  \: { \huge{.}} \:  \:  \:  \sf  a \:  = first \:  \: term \\

  \\ \: \:  \:  \:  \:  \: { \huge{.}} \:  \:  \:  \sf  d \:  = common \:  \: difference \\

• According to the first condition –

  \\ \implies \sf 19 \th \:  \: term \:  \: of \:  \: A.P.  =3(second \:  \: term)\\

  \\ \implies \sf a + (19 - 1)d  =3[a + (2 - 1)d]\\

  \\ \implies \sf a + 18d  =3(a +d) \\

  \\ \implies \sf a + 18d  =3a +3d \\

  \\ \implies \sf 18d - 3d  =3a - a \\

  \\ \implies \sf 15d=2a\\

  \\ \implies \sf a =  \dfrac{15}{2}d \:  \:  \:  \:  \:  -  -  -eq.(1)  \\

• According to the second condition –

 \\  \implies \sf 9 \th \:  \: term \:  \: of \:  \:  A.P. = 19 \\

 \\  \implies \sf a + ( 9 - 1)d = 19 \\

 \\  \implies \sf a + 8d = 19 \\

• Now Using eq.(1) –

 \\  \implies \sf  \dfrac{15}{2}d + 8d = 19 \\

 \\  \implies \sf   \left( \dfrac{15 + 16}{2}  \right)d= 19 \\

 \\  \implies \sf   \left( \dfrac{31}{2}  \right)d= 19 \\

 \\  \implies \sf   31d= 38 \\

 \\  \implies \large { \boxed{ \sf  d=  \dfrac{38}{31} }}\\

• Put the value of 'd' in eq.(1) –

  \\ \implies \sf a =  \left( \dfrac{15}{2} \right) \left( \dfrac{38}{31} \right) \\

 \\  \implies \large { \boxed{ \sf  a=  \dfrac{285}{31} }}\\

• Hence , A.P.   \implies \sf \: \dfrac{285}{31} \: , \:  \dfrac{323}{31}  \:  ,\:   \dfrac{361}{31}  ,......

Answered by Anonymous
48

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

  • 19 term = 3times second term
  • 9 term = 19

{\bf{\blue{\underline{To\:Find:}}}}

  • A.P =?

{\bf{\blue{\underline{Now:}}}}

   :  \implies{\sf{   a_{19} = 3 a_{2} }} \\ \\

   :  \implies{\sf{   a + 18d = 3 (a + d) }} \\ \\

   :  \implies{\sf{   a + 18d = 3 a + 3d }} \\ \\

   :  \implies{\sf{   a -3a= 18d-3d}} \\ \\

   :  \implies{\sf{   -2a=- 15d}} \\ \\

   :  \implies{\sf{   2a= 15d}} \\ \\

   :  \implies{\sf{   a =  \frac{15d}{2} .....(1)}} \\ \\

___________________________________

   :  \implies{\sf{   a_{9} =19}} \\ \\

   :  \implies{\sf{   a + 8d=19.....(2)}} \\ \\

Put value of a in (2)

   :  \implies{\sf{    \frac{15d}{2}  + 8d=19}} \\ \\

   :  \implies{\sf{    \frac{15d + 16d}{2} =19}} \\ \\

   :  \implies{\sf{    \frac{31d}{2} =19}} \\ \\

 : \implies{\sf{ 31d = 38}} \\ \\

   :  \implies{\sf{   d= \frac{38}{31}}} \\ \\

___________________________________

   :  \implies{\sf{   a =  \frac{15}{2} } \times  \frac{38}{31} } \\ \\

   :  \implies{\sf{   a =  \frac{570}{62} } } \\ \\

Hence the A.P a , a+d , a+2d.....

   :  \implies{\sf{    \frac{285}{31} ,\frac{323}{31} , \frac{361}{31} } } \\ \\

Similar questions