Math, asked by kavipriya0213, 6 months ago

The 20th term of an A.Pis 58 and the sum of 20 term is 590. Find the common difference and sum of first to terms

Answers

Answered by BrainlyPopularman
91

GIVEN :

• 20th term of A.P. = 58

• Sum of 20 term = 590

TO FIND :

• Common difference = ?

• Sum of n terms = ?

SOLUTION :

• We know that nth term of A.P. –

  \\ \implies\sf T_n = a + (n - 1)d\\

• Now put n = 20

 \\ \implies\sf T_{20}= a + (20 - 1)d\\

 \\ \implies\sf 58= a +19d \:  \:  \:  \:  -  -  - eq.(1)\\

• We also know that sum of n terms –

  \\ \implies\sf S_n =  \dfrac{n}{2} [2a + (n - 1)d]\\

• Put n = 20

  \\ \implies\sf S_{20} =  \dfrac{20}{2} [2a + (20 - 1)d]\\

  \\ \implies\sf 590=(10)(2a +19d)\\

  \\ \implies\sf \dfrac{590}{10}=2a +19d\\

  \\ \implies\sf 59=2a +19d\\

  \\ \implies\sf 59=a + a +19d\\

• Now using eq.(1) –

  \\ \implies\sf 59=a + 58\\

  \\ \implies\sf a = 59 - 58\\

  \\ \implies\sf a =1\\

• Put the value of 'a' in eq.(1) –

 \\ \implies\sf 58= 1+19d\\

 \\ \implies\sf 58 - 1 = 19d\\

 \\ \implies\sf 57 = 19d\\

 \\ \implies\sf d = \cancel \dfrac{57}{19}\\

 \\  \large\implies{ \boxed{\sf d =3}}\\

▪︎Hence , Common difference is 3.

▪︎Now Let's find sum of n terms –

  \\ \implies\sf S_n =  \dfrac{n}{2} [2a + (n - 1)d]\\

  \\ \implies\sf S_n =  \dfrac{n}{2} [2(1)+ (n - 1)3]\\

  \\ \implies\sf S_n =  \dfrac{n}{2} (2+3n - 3)\\

  \\ \implies\sf S_n =  \dfrac{n}{2} (3n - 1)\\

  \\  \large\implies{ \boxed{\sf S_n = \dfrac{3}{2}  {n}^{2} - \dfrac{n}{2}}}\\


amitkumar44481: Perfect :-)
BrainlyPopularman: Thank you
pulakmath007: Excellent
Answered by Anonymous
4019

Given :

  • The 20th term of an A.P is 58

  • the sum of 20 term is 59.

To Find :

  • Find the common difference and sum of first to terms

Solution :

 \underline \boldsymbol{According \:  to \:  the  \:  Formulas }  \: :

 :  \implies  \:  \:  \:  \:  \: \boxed{ \sf \: t_{n} = a +(n - 1)d }

The 20th term of an A.P is 58 :

 \sf \:  :   \implies    \: \:  \:  \:  \:  \: \:  \:  \:  \: 58  = 1 + 19d \\  \\  \\ \sf \:  :   \implies    \: \:  \:  \:  \:  \: \:  \:  \:  \:19d = 58 - 1 \\  \\  \\ \sf \:  :   \implies    \: \:  \:  \:  \:  \: \:  \:  \:  \:19d = 57 \\  \\  \\ \sf \:  :   \implies    \: \:  \:  \:  \:  \: \:  \:  \:  \:d =   \cancel{\frac{57}{19} } \\  \\  \\ \sf \:  :   \implies    \: \:  \:  \:  \:  \: \:  \:  \:  \:d = 3

the sum of 20 term is 59 :

 \sf \:  :   \implies    \: \:  \:  \:  \:  \: \:  \:  \:  \: 59  = a + 19d \\

Substitute all values :

 \sf \:  :   \implies    \: \:  \:  \:  \:  \: \:  \:  \:  \: 59  = a \: + 19 \times 3 \\  \\  \\  \sf \:  :   \implies    \: \:  \:  \:  \:  \: \:  \:  \:  \: 59 \: = a +58 \\  \\  \\  \sf \:  :   \implies    \: \:  \:  \:  \:  \: \:  \:  \:  \: a = 59 - 58 \\  \\  \\  \sf \:  :   \implies    \: \:  \:  \:  \:  \: \:  \:  \:  \: a = 1 \\

Hence the a is 1 and D is 3

Similar questions