Math, asked by knravindra05, 11 months ago

the 20th term of an AP exceeds it's 15th term by 15. find the common difference​

Answers

Answered by Anonymous
13

\large{\underline{\bf{\purple{Given:-}}}}

  • ✦ 20th term exceeds 15th term by 15.

\large{\underline{\bf{\purple{To\:Find:-}}}}

  • ✦ we need to find common difference.

\huge{\underline{\bf{\red{Solution:-}}}}

We know that :-

 \longmapsto  \rm\:\:a_n= a+(n-1)d

  •    \rm\:a_{20}=a+19d\:
  •   \rm\:a_{15}=a+14d\:

Now,

According to question:-

 \longmapsto  \rm\:a_{20}-a _{15}=15

 \longmapsto  \rm (a + 19d) - (a + 14d) = 15 \\  \\ \longmapsto  \rm \:{ \cancel{ a}} + 19d - { \cancel{a}} - 14d = 15 \\  \\ \longmapsto  \rm \: 19d - 14d = 15 \\  \\ \longmapsto  \rm5d = 15 \\  \\\longmapsto  \rm \:  \: d =   \cancel\frac{15}{5} \\  \\\longmapsto   \bf \: d = 3 \\\\

Hence ,

common difference = 3

━━━━━━━━━━━━━━━━━━━━━━━━━


aditya100405: most intelligent Mam
Answered by Anonymous
5

\huge\red{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf{The \ common \ difference \ is \ 3.}

\sf\orange{Given:}

\sf{20^{th} \ term \ of \ A.P. \ exceeds \ it's \ }

\sf{15^{th} \ term \ by \ 15.}

\sf\pink{To \ find:}

\sf{Common \ difference.}

\huge\sf\green{\underline{\underline{Solution:}}}

\sf{tn=a+(n-1)d...formula}

\sf{\therefore{=>t20=a+19d}}

\sf{\therefore{=>t15=a+14d}}

\sf{According \ to \ given \ condition}

\sf{=>t20-t15=15}

\sf{=>a+19d-(a+14d)=15}

\sf{=>a+19d-a-14d=15}

\sf{=>5d=15}

\sf{=>d=\frac{15}{5}}

\sf{=>d=3}

\sf\purple{\tt{\therefore{The \ common \ difference \ is \ 3.}}}

Similar questions