Math, asked by rahil5166, 16 days ago

The 26th,11th and last term of an A. P. are 0,3 and -1/5, respectively. find the common difference and the number of the terms.​

Answers

Answered by SparklingBoy
178

-------------------------------

▪ Given :-

For an A.P.

  • 26th Term = 0

  • 11th Term = 3

  • Last Term = \sf-\dfrac{1}{5}

-------------------------------

▪ To Find :-

  • Common Difference

  • Number of Terms

-------------------------------

▪ Formula For nth Term :-

 \large \mathtt{a_n= a + (n - 1)d}

Where :

  • a = First term

  • d = Common difference

-------------------------------

▪ Solution -

We Have ,

 \large \mathtt{a_{26}  = a + 25d= 0} \:  \:  -  -  - (1)\\  \\  \large \mathtt{a_{11} = a + 10d = 3} \:  \:   -  -  - (2)

Let,

pth term be the last term of corresponding A.P.

So,

  \large\mathtt{a_p} =  -  \dfrac{1}{5}

Subtracting (2) from (1) We Get ,

 \large \mathtt{15d =  - 3} \\  \\   :\large \mathtt{\longmapsto d =   - \dfrac{3}{15} } \\  \\ \Large \mathtt{  :  \longmapsto \pink{ \boxed{  \boxed{ \bf d =  -  \frac{1}{5} }}}}

Putting Value of d in (1) We Get,

\large \mathtt{a + 25 \bigg( -  \dfrac{1}{5} } \bigg) = 0 \\  \\ \large \mathtt{  :  \longmapsto a - 5 = 0} \\  \\ \LARGE \mathtt{ : \longmapsto \pink{ \boxed{ \boxed{ \bf a = 5}}}}

As Last term is pth term

Hence,

\large \mathtt{a_p = a + (p - 1)d} =   - \dfrac{ 1}{5}  \\  \\ \large \mathtt{  : \longmapsto5 + (p - 1)( -  \frac{1}{5} )} =  -  \frac{1}{5}  \\  \\ \LARGE \mathtt{  :\longmapsto\pink {\boxed{\boxed{\bf p = 27}}}}

Hence,

Their are 27 terms in the A.P.

So ,

  • Common Difference = \bf-\dfrac{1}{5}

  • Number of Terms = 27

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

-------------------------------

Answered by Anonymous
127

Answer:

Given :-

  • The 26th, 11th and last term of an AP are 0, 3 and - 1/5 respectively.

To Find :-

  • What is the value of common difference and the number of the terms.

Formula Used :-

\clubsuit The nth term of an AP Formula :

\mapsto \sf\boxed{\bold{\pink{a_n =\: a + (n - 1)d}}}\\

where,

  • \sf a_n = nth term of an AP
  • a = First term of an AP
  • n = Number of terms of an AP
  • d = Common difference of an AP

Solution :-

First, we have to make the equation :

Given :

  • Number of terms = 26

\leadsto \sf a + (26 - 1)d =\: 0

\implies \sf\bold{\green{a + 25d =\: 0\: ------\: (Equation\: No\: 1)}}\\

Again,

Given :

  • Number of terms = 11

\leadsto \sf a + (11 - 1)d =\: 3

\leadsto\sf\bold{\green{a + 10d =\: 3\: ------\: (Equation\: No\: 2)}}\\

Again,

\leadsto \sf \bold{\green{a + (n - 1)d =\: - \dfrac{1}{5}\: ------\: (Equation\: No\: 3)}}\\

Now, by subtracting the equation no 1 and 2 we get,

\implies \sf a + 25d - (a + 10d) =\: 0 - 3

\implies \sf a + 25d - a - 10d =\: - 3

\implies \sf {\cancel{a}} {\cancel{- a}} + 25d - 10d =\: - 3

\implies \sf 15d =\: - 3

\implies \sf d =\: - \dfrac{\cancel{3}}{\cancel{15}}

\implies \sf \bold{\red{d =\: - \dfrac{1}{5}}}

Hence, the common difference of an AP is - .

Again, by putting the value of d in the equation no 2 we get,

\implies \sf a + 10d =\: 3

\implies \sf a + 10\bigg(- \dfrac{1}{5}\bigg) =\: 3

\implies \sf a + \bigg(- \dfrac{10}{5}\bigg) =\: 3

\implies \sf a - \dfrac{10}{5} =\: 3

\implies \sf a =\: 3 + \dfrac{10}{5}

\implies \sf a =\: \dfrac{15 + 10}{5}

\implies \sf a =\: \dfrac{\cancel{25}}{\cancel{5}}

\implies \sf\bold{\purple{a =\: 5}}

Again, by putting the value of a and d in the equation no 3 we get,

\longrightarrow \sf a + (n - 1)d =\: - \dfrac{1}{5}

\longrightarrow \sf 5 + \bigg(n - 1\bigg)\bigg(- \dfrac{1}{5}\bigg) =\: - \dfrac{1}{5}

\longrightarrow \sf \bigg(n - 1\bigg)\bigg(- \dfrac{1}{5}\bigg) =\: - \dfrac{1}{5} - 5

\longrightarrow \sf \bigg(n - 1\bigg)\bigg(- \dfrac{1}{5}\bigg) =\: \dfrac{- 1 - 25}{5}

\longrightarrow \sf \bigg(n - 1\bigg)\bigg(- \dfrac{1}{5}\bigg) =\: \dfrac{- 26}{5}

\longrightarrow \sf \bigg(n - 1\bigg)\bigg(- \dfrac{1}{5}\bigg) =\: \dfrac{- 26}{5}

\longrightarrow \sf (n - 1) =\: - \dfrac{26}{5} \times \bigg(- \dfrac{5}{1}\bigg)

\longrightarrow \sf n - 1 =\: \dfrac{26}{5} \times \dfrac{5}{1}

\longrightarrow \sf n - 1 =\: \dfrac{130}{5}

\longrightarrow \sf n - 1 =\: 26

\longrightarrow \sf n =\: 26 + 1

\longrightarrow \sf\bold{\red{n =\: 27}}

{\small{\bold{\underline{\therefore\: The\: common\: difference\: is\: - \dfrac{1}{5}\: and\: the\: number\: of\: terms\: is\: 27\: .}}}}\\

Similar questions