Math, asked by NikitaSingh10K, 1 month ago

The 2nd, 31st and last term of an A.P. is, 7(3/4), 1/2 and -6(1/2) respectively. The number of terms of the A.P. is
(a) 48
(b) 60
(c) 52
(d) 59​

Answers

Answered by sanjuyadav00
2

Step-by-step explanation:

तरस गये है हम तेरे मुंह से कुछ सुनने को हम प्यार की बात न सही कोई शिकायत ही कर दे

Answered by Salmonpanna2022
2

Answer:

The correct option is (d) i.e 59

Step-by-step explanation:

 \bf \underline{Solution-} \\

Let assume that the first term and common difference is a and d respectively.

  \rm \Rightarrow \: a + d = 7 \frac{3}{4}  \\

\rm \Rightarrow \:a + d =  \frac{31}{4}  \\

\rm \Rightarrow \:a + (31 -  1)d =  \frac{1}{2}  \\

\rm \Rightarrow \:a + 30d =  \frac{1}{2}  \\

Solve the above equation

\rm \Rightarrow \:d =  -  \frac{1}{4}  \\

\rm \Rightarrow \:a = 8 \\

Assume that the total number of terms are n

\rm \Rightarrow \:8 + (n - 1)  \bigg( -  \frac{1}{4}  \bigg) =  -  \frac{13}{2}  \\

\rm \Rightarrow \:8 -  \frac{1}{4} n +  \frac{1}{4}  =  -  \frac{13}{2}  \\

\rm \Rightarrow \: \frac{33}{4}  -  \frac{1}{4} n =  -  \frac{13}{2 }  \\

\rm \Rightarrow \: \frac{1}{4} n =  \frac{33}{4}  +  \frac{13}{2}  \\

Solve further

\rm \Rightarrow \: \frac{1}{4} n =  \frac{(33 \times 1) + (13 \times 2)}{4}  \\

\rm \Rightarrow \: \frac{1}{4} n =  \frac{33  + 26}{4}  \\

\rm \Rightarrow \: \frac{1}{4} n =  \frac{59}{4}  \\

\bf \Rightarrow \:n = 59. \\

The correct option is (d) i.e 59.

Similar questions