The 3rd term of a G.P is 27 and the fifth term is 3. Which term is
?
Answers
GIVEN :
3rd term of the G.P = 27
5th term of the G.P = 3
TO FIND :
The term whose value is 1/9.
PROCESS :
Putting the value of 'a', we get
Now, Putting the value of 'r' in equation (1) we get,
Now , A/Q
answers
3rd term of the G.P = 27
5th term of the G.P = 3
TO FIND :
The term whose value is 1/9.
PROCESS :
\bf{ \implies \: a_{3} \: = 27}⟹a
3
=27
\implies \: a {r}^{2} \: = \: 27⟹ar
2
=27
\implies \: a \: = \: \frac{27}{ {r}^{2} } \: \: \: \: \: \: \: \: \: arrow(1)⟹a=
r
2
27
arrow(1)
\bf{ \implies \: a_{5} \: = \: 3}⟹a
5
=3
\implies \: a {r}^{4} \: = \: 3⟹ar
4
=3
Putting the value of 'a', we get
\implies \: \frac{27}{ {r}^{2}} \times {r}^{4} \: = \:3⟹
r
2
27
×r
4
=3
\implies \: 27 {r}^{2} \: = \: 3⟹27r
2
=3
\implies \: {r}^{2} = \: \frac{1}{9}⟹r
2
=
9
1
\implies \: r = \: \frac{1}{3}⟹r=
3
1
Now, Putting the value of 'r' in equation (1) we get,
\implies \: a \: = \: \frac{27}{ { (\frac{1}{3}) }^{2} } \: \:⟹a=
(
3
1
)
2
27
\implies \: a \: = \: {3}^{3} \times {3}^{2}⟹a=3
3
×3
2
\implies \: a \: = \: {3}^{5}⟹a=3
5
Now , A/Q
\implies \: a_{n} \: = \: \frac{1}{9}⟹a
n
=
9
1
\implies \: a {r}^{n - 1} \: = \: \frac{1}{9}⟹ar
n−1
=
9
1
\implies \: {3}^{5} {( \frac{1}{3} )}^{n - 1} \: = \: \frac{1}{9}⟹3
5
(
3
1
)
n−1
=
9
1
\implies \: {3}^{5} \times {3}^{2} = {3}^{n - 1}⟹3
5
×3
2
=3
n−1
\implies \: {3}^{7} = {3}^{ n- 1}⟹3
7
=3
n−1
\implies \: 7 = \: n - 1⟹7=n−1
\implies \: n \: = \: 8⟹n=8
\boxed{ \sf{ \therefore \: Our \: required \: term \: is \: 8}}
∴Ourrequiredtermis
explanation
hope it will help you please mark this answers as brainlist please