Math, asked by RonishGhimire, 1 year ago

The 3rd term of a G.P is 27 and the fifth term is 3. Which term is
 \frac{1}{9}
?

Answers

Answered by BraɪnlyRoмan
48

\huge \boxed{ \underline{ \underline{ \bf{Answer}}}}

GIVEN :

3rd term of the G.P = 27

5th term of the G.P = 3

TO FIND :

The term whose value is 1/9.

PROCESS :

 \bf{ \implies \: a_{3} \:  = 27}

 \implies \: a {r}^{2}  \:  =  \: 27

 \implies \: a \:  =  \:  \frac{27}{ {r}^{2} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rightarrow(1)

 \bf{ \implies \: a_{5} \:  =  \: 3}

 \implies \: a {r}^{4}  \:  =  \: 3

Putting the value of 'a', we get

 \implies \:  \frac{27}{ {r}^{2}}  \times  {r}^{4}  \:  =  \:3

 \implies \: 27 {r}^{2}  \:  =  \: 3

 \implies \:  {r}^{2}  =  \:  \frac{1}{9}

 \implies \:  r  =  \:  \frac{1}{3}

Now, Putting the value of 'r' in equation (1) we get,

 \implies \: a \:  =  \:  \frac{27}{ { (\frac{1}{3}) }^{2} }   \: \:

 \implies \: a \:  =  \:  {3}^{3}  \times  {3}^{2}

 \implies \: a \:  =  \:  {3}^{5}

Now , A/Q

 \implies \: a_{n} \:  =  \:  \frac{1}{9}

 \implies \: a {r}^{n - 1} \:  =  \:  \frac{1}{9}

 \implies \:   {3}^{5} {( \frac{1}{3} )}^{n - 1} \:  =  \:  \frac{1}{9}

  \implies \:  {3}^{5}  \times  {3}^{2}  =  {3}^{n - 1}

 \implies \:  {3}^{7}  =  {3}^{ n- 1}

 \implies \: 7 =  \: n - 1

 \implies \: n \:  =  \: 8

 \boxed{ \sf{ \therefore \: Our \:  required  \: term  \: is \:  8}}

Answered by karan926830
0

answers

3rd term of the G.P = 27

5th term of the G.P = 3

TO FIND :

The term whose value is 1/9.

PROCESS :

\bf{ \implies \: a_{3} \: = 27}⟹a

3

=27

\implies \: a {r}^{2} \: = \: 27⟹ar

2

=27

\implies \: a \: = \: \frac{27}{ {r}^{2} } \: \: \: \: \: \: \: \: \: arrow(1)⟹a=

r

2

27

arrow(1)

\bf{ \implies \: a_{5} \: = \: 3}⟹a

5

=3

\implies \: a {r}^{4} \: = \: 3⟹ar

4

=3

Putting the value of 'a', we get

\implies \: \frac{27}{ {r}^{2}} \times {r}^{4} \: = \:3⟹

r

2

27

×r

4

=3

\implies \: 27 {r}^{2} \: = \: 3⟹27r

2

=3

\implies \: {r}^{2} = \: \frac{1}{9}⟹r

2

=

9

1

\implies \: r = \: \frac{1}{3}⟹r=

3

1

Now, Putting the value of 'r' in equation (1) we get,

\implies \: a \: = \: \frac{27}{ { (\frac{1}{3}) }^{2} } \: \:⟹a=

(

3

1

)

2

27

\implies \: a \: = \: {3}^{3} \times {3}^{2}⟹a=3

3

×3

2

\implies \: a \: = \: {3}^{5}⟹a=3

5

Now , A/Q

\implies \: a_{n} \: = \: \frac{1}{9}⟹a

n

=

9

1

\implies \: a {r}^{n - 1} \: = \: \frac{1}{9}⟹ar

n−1

=

9

1

\implies \: {3}^{5} {( \frac{1}{3} )}^{n - 1} \: = \: \frac{1}{9}⟹3

5

(

3

1

)

n−1

=

9

1

\implies \: {3}^{5} \times {3}^{2} = {3}^{n - 1}⟹3

5

×3

2

=3

n−1

\implies \: {3}^{7} = {3}^{ n- 1}⟹3

7

=3

n−1

\implies \: 7 = \: n - 1⟹7=n−1

\implies \: n \: = \: 8⟹n=8

\boxed{ \sf{ \therefore \: Our \: required \: term \: is \: 8}}

∴Ourrequiredtermis

explanation

hope it will help you please mark this answers as brainlist please

Similar questions