Math, asked by parkavi30, 11 months ago

The 3rd term of a GP is 2/3 and 6th term is 2/81 then the 1st term is​

Answers

Answered by MaheswariS
11

\underline{\textsf{Given:}}

\textsf{In a G.P}

\mathsf{t_3=\dfrac{2}{3}\;\&\;t_6=\dfrac{2}{81}}

\underline{\textsf{To find:}}

\textsf{First term of the G.P}

\underline{\textsf{Solution:}}

\underrline{\mathsf{Concept\;used:}}

\mathsf{The\;n\,th\;term\;of\;the\;G.P\;a,ar,ar^2.............\;is}

\boxed{\mathsf{t_n=ar^{n-1}}}

\mathsf{Consider,}

\mathsf{t_3=\dfrac{2}{3}}

\implies\mathsf{ar^2=\dfrac{2}{3}}.....(1)

\mathsf{t_6=\dfrac{2}{81}}

\implies\mathsf{ar^5=\dfrac{2}{81}}.....(2)

\mathsf{Divide\;(2)\;by\;(1)}

\mathsf{\dfrac{ar^5}{ar^2}=\dfrac{\dfrac{2}{81}}{\dfrac{2}{3}}}

\mathsf{r^3=\dfrac{2}{81}{\times}\dfrac{3}{2}}

\mathsf{r^3=\dfrac{1}{27}}

\implies\boxed{\mathsf{r=\dfrac{1}{3}}}

\text{From (1)}

\mathsf{a{\times}\dfrac{1}{9}=\dfrac{2}{3}}

\mathsf{a=\dfrac{2{\times}9}{3}}

\mathsf{a=2{\times}3}

\implies\boxed{\mathsf{a=6}}

\underline{\textsf{Answer:}}

\textsf{First term is 6}

\underline{\textsf{Find more:}}

Find the common ratio of GP 2 2 root 2 4 .......​

https://brainly.in/question/13787419

If r=1 upon 3,a=9 find t7​

https://brainly.in/question/1127017

Answered by aakanshachauhan
1

Answer:

1st term is = 6

Step-by-step explanation:

general form of G.P is a, ar, ar², ar³, ar⁴,ar⁵... and so on

we have, 3rd term is = 2/3

6th term is = 2/81

we'll write it like G.P form :

ar² = 2/3

ar⁵ = 2/81

first we will find value of [r = ?]

and, then find value of [a = ?]

ar⁵/ar² = 2/81 × 3/2

after cross multiplication..we have

r³ = 1/27 , r = 1³/3³ , (r = 1/3)

now, we find value of [a = ?]

3rd term is 2/3

ar²= 2/3

a × (1/3)² = 2/3

a × 1/9 = 2/3

after cross multiplication we have..

3a = 18

(a = 6)..✌️

Similar questions