Math, asked by akshayudhayaa, 10 months ago


The 5th and 12th term of an A.P. are 23 and 37 respectively. Find the sum of
the first 40 terms of the A.P.​

Answers

Answered by sumithra10ney
3

Answer:

Step-by-step explanation:

Attachments:
Answered by Anonymous
6

\tt\it\bf\huge\it\bm{\mathcal{\fcolorbox{blue}{yellow}{\red{Given:-}}}}

_______________________________

Fifth term of AP (A5). :- 23

Twelve term of AP (A12) :- 37

_______________________________

\tt\it\bf\huge{\mathcal{\green{Tofind:-}}}

_______________________________

Sum of first 40 term of AP (S40):-

_______________________________

\tt\it\bf\huge\it\bm{\mathcal{\fcolorbox{black}{green}{\red{Solution:-}}}}

_______________________________

we know that :

\tt{\mathcal{\blue{ An=a+(n-1)d}}}

•°• A5 = a + (5-1)d

or,

➝ 23 = a +4d••••••••••••••(1)

Similarly,

➝ A12 = a + (12-1)d

➝ 37 = a + 11d•••••••••••••(2)

Using elimination method solve for (a) and (d) from equation (1) and (2):-

a+4d=23

a+11d=37

-_-___-__

-7d = -14

d = 14/7 = 2

putting the value of d in equation (1)

23=a+4d

23=a+4(2)

23 = a +8

a=23-8

a=15

•°• \tt\huge{\red{ a= 15,d=2 }}

\tt{\mathcal{\blue{ Sn=n/2[2a+(n-1)d]}}}

•°• S40 = 40/2{2(15) +(40-1)2}

20{30+39*2}

20{30 +78}

20{108}

2160

Hence, Sum of first 40 term= 2160

_______________________________

\tt\it\bf\huge\it\bm{\mathcal{\fcolorbox{blue}{yellow}{\red{Be::Brainly !}}}}

Similar questions