Math, asked by keshavdude, 10 months ago

The 5th and 15th terms of an A.P. are -13 and -17 respectively. Find the sum of first 21 terms of the A.P.

Answers

Answered by Anonymous
16

\blue{\bold{\underline{\underline{Answer:}}}}

 \:\:

 \green{\underline \bold{Given :}}

 \:\:

  • 5th term is -13

  • 15th term is -17

 \:\:

 \red{\underline \bold{To \: Find:}}

 \:\:

  • Sum of first 21 term.

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

 \underline{\bold{\texttt{We know that :}}}

 \:\:

\purple{\longrightarrow}a_n = a + (n - 1)d

 \:\:

  • a = First term

  • n = number of term

  • d = common difference

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

 \sf \longmapsto -13 = a + (5 - 1)d

 \:\:

 \bf\dashrightarrow -13 = a + 4d -------(1)

 \:\:

 \sf \longmapsto -17 = a + (15 - 1)d

 \:\:

 \sf \longmapsto -17 = a + 14d

 \:\:

 \bf \dashrightarrow -a - 14d = 17 -------(2)

 \:\:

 \underline{\bold{\texttt{Adding (1) and (2)}}}

 \:\:

 \sf \longmapsto -10d = 4

 \:\:

 \sf \longmapsto d = \dfrac { -4 } { 10 }

 \:\:

 \bf \dashrightarrow d = \dfrac { -2 } { 5 }

 \:\:

 \underline{\bold{\texttt{Putting the value of d in (1)}}}

 \:\:

 \sf \longmapsto -13 = a + 4(\dfrac { -2 } { 5 } )

 \:\:

 \sf \longmapsto -13 = a - \dfrac { 8 } { 5 }

 \:\:

 \sf \longmapsto a = -13 + \dfrac { 8 } { 5 }

 \:\:

 \sf \longmapsto a = \dfrac { -65 + 8 } { 5 }

 \:\:

 \bf \dashrightarrow a = \dfrac { -57 } { 5 }

 \:\:

 \underline{\bold{\texttt{Sum of first 21 term:}}}

 \:\:

\purple\longrightarrow  \sf S_n = \dfrac { n } { 2 } (2a + (n - 1)d )

 \:\:

 \sf \longmapsto S_n = \dfrac { 21} { 2 } (2\times\dfrac { -57 } { 5 } + (21 - 1)\dfrac { -2 } { 5 } )

 \:\:

 \sf \longmapsto S_n = \dfrac { 21} { 2 } (\dfrac { -114 } { 5 } - 8)

 \:\:

 \sf \longmapsto S_n = \dfrac { 21 } { 2 } ( \dfrac { -114 - 40 } { 5 })

 \:\:

 \sf \longmapsto S_n = \dfrac { 21 } { 2 } (\dfrac { -154 } { 5 } )

 \:\:

 \sf \longmapsto S_n = \dfrac { -1617 } { 5 }

 \:\:

Hence sum of first 21 term is  \dfrac { -1617 } { 5 }

\rule{200}5

Similar questions