Math, asked by anoopsingh7615, 1 year ago

The 6th term of an ap is -10 and 10 th term is-26 determine the 15th term of AP

Answers

Answered by sujalabhinav74
13

Answer:


Step-by-step explanation:


Attachments:
Answered by Anonymous
13

\blue{\bold{\underline{\underline{Answer:}}}}

 \:\:

 \green{\underline \bold{Given :}}

 \:\:

  • 6th term of an ap is -10

 \:\:

  • 10 th term is -26

 \:\:

 \red{\underline \bold{To \: Find:}}

 \:\:

  • The 15th term of AP

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

 \underline{\bold{\texttt{We know that :}}}

 \:\:

\purple\longrightarrow  \bf a_n = a + (n - 1)d

 \:\:

Below are the each term used above

 \:\:

  •  \rm a_n = nth term

 \:\:

  • a = First term

 \:\:

  • n = Number of term

 \:\:

  • d = Common difference

 \:\:

We are given that the 6th term of is -10

 \:\:

So,

 \:\:

 \sf \longmapsto -10 = a + (6 - 1)d

 \:\:

 \bf \dashrightarrow  a + 5d = -10 -----(1)

 \:\:

Also,

 \:\:

10 th term is -26

10 th term is -26  \:\:

So,

 \sf \longmapsto -26 = a + (10 - 1)d

 \:\:

 \sf \longmapsto -26 = a + 9d

 \:\:

 \bf \dashrightarrow -a - 9d = 26 -------(2)

 \:\:

 \underline{\bold{\texttt{Adding (1) \& (2)}}}

 \:\:

 \sf \longmapsto a + 5d - a - 9d = -10 + 26

 \:\:

 \sf \longmapsto -4d = 16

 \:\:

 \sf \longmapsto d = \dfrac { 16 } { -4 }

 \:\:

 \bf \dashrightarrow d = -4

 \:\:

 \underline{\bold{\texttt{Putting d = -4 in (1)}}}

 \:\:

 \sf \longmapsto  a + 5(-4)= -10

 \:\:

 \sf \longmapsto a - 20 = -10

 \:\:

 \sf \longmapsto a = -10 + 20

 \:\:

 \bf \dashrightarrow a = 10

 \:\:

 \underline{\bold{\texttt{The 15th term}}}

 \:\:

\purple\longrightarrow  \rm a_{15} = 10 + (15 - 1)-4

 \:\:

 \sf \longmapsto a_{15} = 10 + 14 \times -4

 \:\:

 \sf \longmapsto a_{15} = 10 - 56

 \:\:

 \bf \dag \: \: a_{15} = -46

 \:\:

Hence 15th term of this AP is -46

\rule{200}5

Similar questions