Math, asked by alok56789, 9 months ago

the 6th term of an AP is 30 if its 20th term exceeds its 15th term by 25 ,find the Ap... guys solve this​

Answers

Answered by silentlover45
34

\large\underline{Given:-}

  • Sum of 6th term of Ap ⇢ 30
  • Sum of 20th term exceed 15th term by 25.

\large\underline{To find:-}

  • find the Ap

\large\underline{Solutions:-}

\: \: \: \: \: \fbox{{a_n} \: \: = \: \: {a} \: + \: {(n \: - \: 1)} \: d}

  • \: \: \: \: \: {a} \: + \: {5d} \: \: = \: \: {30} \: \: \: \: \: .....{(1)}.

Now,

✰ 20th term exceed 15th term by 25.

\: \: \: \: \: \leadsto {a_{20}} \: - \: {a_{15}} \: \: = \: \: {25}

\: \: \: \: \: \leadsto {a} \: + \: {19d} \: - \: {({a} \: + \: {14d})} \: \: = \: \: {25}

\: \: \: \: \: \leadsto {a} \: + \: {19d} \: - \: {a} \: - \: {14d} \: \: = \: \: {25}

\: \: \: \: \: \leadsto {19d} \: - \: {14d} \: \: = \: \: {10}

\: \: \: \: \: \leadsto {5d} \: \: = \: \: {25}

\: \: \: \: \: \leadsto {d} \: \: = \: \: \frac{25}{5}

\: \: \: \: \: \leadsto {d} \: \: = \: \: {5}

»★Then,

Putting value of d in Eq (1).

\: \: \: \: \: \leadsto {a} \: + \: {5d} \: \: = \: \: {30}

\: \: \: \: \: \leadsto {a} \: + \: {5} \: \times \: {5} \: \: = \: \: {30}

\: \: \: \: \: \leadsto {a} \: + \: {25} \: \: = \: \: {30}

\: \: \: \: \: \leadsto {a} \: \: = \: \: {30} \: - \: {25}

\: \: \: \: \: \leadsto {a} \: \: = \: \: {5}

✰ Ap ⇢ 5, 10, 15, 20....

______________________________________

Answered by SpaceWalker17
31

\underline\bold{QUESTION}

The 6th term of an AP is 39 if its 20th term exceeds its 15th term by 25 . Find the AP.

\underline\bold{SOLUTION}

a+5d=30------(i)

a15+25= a20

=>a+14d+25=a+19d

=>25=19d-14d

=>25=5d

=>d=25/5

=>d=5

Putting the value of d in equation(i)

a+5d=30

a+5×5=30

a=30-25

a=5

AP= a,a+d,a+2d,a+3d.......

5,5+5,5+2×5,5+3×5.......

5,10,5+10,5+15......

5,10,15,20......

HOPE THIS ANSWER WILL HELP YOU!!❤✌

Similar questions