Math, asked by sureshkumarkc789, 6 months ago

The 6th term of an arithmetic sequence is 24. What is the sum of 1st and 11th term of this arithmetic sequence​

Answers

Answered by Anonymous
87

 \small \underline \bold{For \: an \: A.P.}-

 \large \underline \bold{Given}:-

\: \: \: \: \sf{6th \: term \: = \: A(6) = 24}

 \large \underline \bold{To \: Find}:-

\sf{What's \: the \: sum \: of \: 1st \: and \: 11th \: term \: ?}

 \large \underline \bold{Using \: identity}:-

\: \: \: \: \: \: \: \: \: \sf\boxed{\sf\red{an = a + (n - 1)d}}

\sf{Here \: ,}

\: \: \: \: \: \: \: \sf{an = nth \: term}

\: \: \: \: \: \: \: \: \: \sf{a = first \: term}

\: \: \: \: \: \: \: \: \: \sf{n = no. \: of \: term}

\: \: \: \: \: \: \: \: \: \sf{d = Common \: difference}

 \large \underline \bold{Solution}:-

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf{A(6) = 24}

\: \: \: \sf{a + (6 - 1)d = 24}

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf{a + 5d = 24 ---(1)}

\sf{and \: ,}

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf{A(11) = a + 10d}

 \small \bold{Now \: ,}

\: \: \: \: \: \: \: \: \: \: \: \: \sf{A(1) + A(11)}

\: \: \: \: \: \: \: \: \sf{= a + (a + 10d)}

\: \: \: \: \: \: \: \: \sf{= 2a + 10d}

\: \: \: \: \: \: \: \: \sf{= 2(a + 5d)}

\: \: \: \: \: \: \: \: \sf{= 2(24) \: \: \: \bigg(From \: eq.(1) \bigg)}

\: \: \: \: \: \: \: \: \sf{= \: 48}

\sf\red{Sum \: of \: 1st \: and \: 11th \: term \: of \: this \: A.P. \: is \: 48}

Answered by amazingbuddy
5

___________________________

\fbox\blue{A} \fbox\pink{n} \fbox\orange{s} \fbox\purple{w} \fbox\green{e} \fbox\red{r}

\huge \tt Given :-

  • \: \: \: \: \sf{6th \: term \: = \: A(6) = 24}6thterm=A(6)=24

\huge \tt To \: Find :-

  • \sf{The \: sum \: of \: 1st \: and \: 11th \: term \: }⁉️

\: \: \: \: \: \: \: \: \: \sf{\boxed{\sf{\boxed {\pink{an = a + (n - 1)d}}}}}

\sf{Here \: ,}

\:\implies \sf{a_n = nth \: term}

\:\implies \sf{a = first \: term}

\: \implies \sf{n = no. \: of \: term}

\:\sf{d = Common \: difference}

\huge \tt Solution :-

\: :\implies \sf{A(6) = 24}A(6)=24

\: :\implies \sf{a + (6 - 1)d = 24}a+(6−1)d=24

\: :\implies \sf{a + 5d = 24 ---(1)}

\sf{and \: ,}

\: :\implies \: \sf{A(11) = a + 10d}

\small \bold{Now \: ,}

\: :\implies \sf{A(1) + A(11)}

\: :\implies \sf{a + (a + 10d)}

\: :\implies \sf{ 2a + 10d}

\: :\implies \sf{2(a + 5d)}

\: :\implies \sf{2(24) \: \: \: ...... \: frm\: eq 1 }

\: :\implies \sf{\: 48}

\tt\green{Sum \: of \: 1st \: and \: 11th \: term \: of \: this \: A.P. \: is \: 48}

______________________________________

Hope it helps ‼️

Similar questions