Math, asked by pranadeepreddy1575, 1 month ago

The 6thand 17th term of an ap are 19th and 41 respectively find 30th term

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Let assume that,

↝ First term of an AP series is a

and

↝ Common difference of an AP series is d.

Given that,

\rm :\longmapsto\:a_6 = 19 \:  \:  \:  \: and \:  \:  \:  \: a_{17} = 41

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Tʜᴜs,

\rm :\longmapsto\:a_6 = 19

\rm :\longmapsto\:a + (6 - 1)d = 19

\rm :\longmapsto\:a + 5d = 19

\bf\implies \:a = 19 - 5d -  -  -  - (1)

Also,

\rm :\longmapsto\:a_{17}= 41

\rm :\longmapsto\:a + (17 - 1)d = 41

\rm :\longmapsto\:a + 16d = 41

On substituting the value from equation (1), we get

\rm :\longmapsto\:19 - 5d + 16d = 41

\rm :\longmapsto\:11d = 41 - 19

\rm :\longmapsto\:11d = 22

\bf\implies \:d = 2

On substituting the value of d, in equation (1), we get

\rm :\longmapsto\:a = 19 - 5 \times 2

\rm :\longmapsto\:a = 19 - 10

\bf\implies \:a \:  =  \: 9

So,

\purple{ \bf{ \: \rm :\longmapsto\:a_{30} = a + (30 - 1)d \: }}

\purple{ \bf{ \: \rm :\longmapsto\:a_{30} = a + 29d \: }}

\purple{ \bf{ \: \rm :\longmapsto\:a_{30} = 9 + 29(2) \: }}

\purple{ \bf{ \: \rm :\longmapsto\:a_{30} = 9 + 58 \: }}

\purple{ \bf{ \: \rm :\longmapsto\:a_{30} = 67 \: }}

Additional Information :-

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of AP.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Similar questions