the 7th and the 9th term of an ap are 15 and 27 respectively. find the series and the sum of the first 50 terms
Answers
Answered by
3
Step-by-step explanation:
an = a +(n-1) d
15 = a +( 7 -1 ) d
15 = a + 6 d ............(1)
an = a + (n-1) d
27 = a + ( 9- 1) d
27 = a + 8 d .............(2)
By solving (1) and(2) with elimination method you get
15 =a +6d
27 = a + 8d
_ _ _
____________________
- 12= -2d
therefore d =6
15= a +6d
15 = a + 6 ( 6)
15= a +36
15 - 36 =a
-21= a
AP = -21 , -15 , -9 .......
sn= n/2 (2a + (n-1) d)
=50/2 ( 2 (-21) + ( 50-1) (6))
= 25( -42+(49)(6))
= 25 (-42+294)
=25(252)
= 6300
Similar questions