The 7th term of an A.P is –20 and its 16th term is 16. Find the A.P. Also find the sum of its first 20 terms
please write full equation.
Answers
Answered by
1
Step-by-step explanation:
Let a and d be the first term and common difference of AP
nth term of AP
a
n
=a+(n−1)d
∴a
3
=a+(3−1)d=a+2d
a
7
=a+(7−1)d=a+6d
Given a
3
+a
7
=6
∴(a+2d)+(a+6d)=6
⇒2a+8d=6
⇒a+4d=3....(1)
Also given
a
3
×a
7
=8
∴(a+2d)(a+6d)=8
⇒(3−4d+2d)(3−4d+6d)=8 [Using (1)]
⇒(3−2d)(3+2d)=8
⇒9−4d
2
=8
⇒4d
2
=1
⇒d
2
=
4
1
⇒d=±
2
1
When d=
2
1
a=3−4d=3−4×
2
1
=3−2=1
When d=−
2
1
a=3−4d=3+4×
2
1
=3+2=5
When a=1 & d=
2
1
S
16
=
2
16
[2×1+(16−1)×
2
1
]=8(2+
2
15
)=4×19=76
When a=5 & d=−
2
1
S
16
=
2
16
[2×5+(16−1)×(−
2
1
)]=8(10−
2
15
)=4×5=20
Thus, the sum of first 16 terms of the AP is 76 or 20.
Answered by
1
Step-by-step explanation:
refer to the attachment
hope it helps✌✌
Attachments:
Similar questions