Math, asked by ujjwalmehta9231, 11 months ago

The 7th term of an A.P. is – 4 and its 13th term is – 16. Find the A.P.

Answers

Answered by umiko28
20

Answer:

\huge\underline{ \underline{ \red{your \: \: answer}}}

Step-by-step explanation:

 \bf\red{ \mapsto \: a7 =  - 4} \\  \\ \bf\pink{ \mapsto \:a + 6d =  - 4 -  -  -  - (1)}  \\  \\ \bf\green{ \mapsto \:a13 =  - 16}  \\  \\ \bf\purple{ \mapsto \:a + 12 =   - 16 -  -  -  -  -  - (2)} \\  \\ \sf\blue{ (2) - (1) =  =  &gt;  }\\  \\ \bf\red{ \mapsto \:(a  + 12d) - (a + 16d) =   - 16 - ( - 4)} \\  \\ \bf\green{ \mapsto \: a + 12d - a - 16d =  - 16 + 4} \\  \\ \bf\red{ \mapsto \:  - 4d =  - 12 }\\  \\ \bf\purple{ \mapsto \: d =  \frac{ - 12}{ - 4} } \\  \\ \bf\orange{ \mapsto \:d = 3 } \\  \\ \bf\red{ value \: of \: d \: put \: in \: (1)} \\  \\ \bf\pink{ \mapsto \: a + 6d =  - 4} \\  \\ \bf\blue{ \mapsto \: a =  - 4 -( 6 \times 3)} \\  \\ \bf\green{ \mapsto \:a =  - 4 - 18 } \\  \\ \bf\purple{\mapsto \:a =  - 22 } \\  \\ \bf\red{ \underline{ \mapsto : \:a =  - 22 \: and \: d = 3 }} \\  \\ \bf\orange{ Therefore  \: the  \: AP  \: is\mapsto : </p><p>-22, -19, -16,-13......}

\large\boxed{ \fcolorbox{green}{blue}{hope \: it \: help \: you}}

Answered by Anonymous
3

Answer:

hey

Step-by-step explanation:

a7 = a + 6d

-4 = a + 6d --------- eqn1

a13 = a + 12d

-16 = a + 12d ----------- eqn2

Subtract eqn1 from 2

We get

a + 12d = -16

- a + 6d = -4

__________

6d = - 12

__________

d = -12/6

d = -2

By putting the value of d in eqn1

a = -4 + { 6 (-2)}

a = -4 -12

a = -16

a1 = a = -16

a2 = a + d = -16 - 2 = -18

a3 = a + 2d = -16 -4 = -20

a4 = a + 3d = -16 -6 = -22

AP -> -16, -18, -20, -22, ............

Similar questions