Math, asked by Sandosh, 9 months ago

The 7th term of an ap is -4 and its 13th term is -16.Find the first term, common difference and nth term

Answers

Answered by Anonymous
4

Answer:

♣️Refer To Attachment♣️

I hOpe It HeLpS Ya!

✌️✌️✌️✌️

Attachments:
Answered by silentlover45
7

\large\underline{Given:-}

  • 7th term of an Ap ⇢ -4
  • 13th term of that Ap ⇢ -16

\large\underline{To find:-}

  • find the first term, common different and nth term ...?

\large\underline{Solutions:-}

\: \: \: \: \: \therefore \: \: \: {a_n} \: \: = \: \: {a} \: + \: {(n \: - \: {1})} \: d

  • a ⇢ first term
  • d ⇢ common difference
  • n ⇢ number of term
  • an ⇢ last term

»★ We have

✰ 7th term of an Ap ⇢ -4

\: \: \: \: \: \leadsto \: \: {a} \: + \: {({7} \: - \: {1})} \: d \: \: = \: \: {-4}

\: \: \: \: \: \leadsto \: \: {a} \: + \: {6d} \: \: = \: \: {-4} \: \: \: \: \: \: \: ....{(i)}.

✰ And, 13th term of that Ap ⇢ -16

\: \: \: \: \: \leadsto \: \: {a} \: + \: {({13} \: - \: {1})} \: d \: \: = \: \: {-16}

\: \: \: \: \: \leadsto \: \: {a} \: + \: {12d} \: \: = \: \: {-16} \: \: \: \: \: \: \: ....{(ii)}.

Now, Subtracting Eq. {(i)} and Eq. {(i)}

 {a} \: + \: {6d} \: \: = \: \: {-4} \\ {a} \: + \: {12d} \: \: = \: \: {-16} \\ \underline{- \: \: \: \: \: \: \: \: - \: \: \: \: \:  = \: \: \: \: \: \: \: + \: \: \: \: \: \: } \\ \: \: \: \: \: \: \: \: \: \: \: {-6d} \: \: \: \: \: = \: \: \: {12}

\: \: \: \: \:  \leadsto \: \: d \: \: = \: \: \frac{12}{-2}

\: \: \: \: \:  \leadsto \: \: {-2}

»★ Now, putting the value of d in Eq. (i)

\: \: \: \: \: \leadsto \: \: {a} \: + \: {6d} \: \: = \: \: {-4}

\: \: \: \: \: \leadsto \: \: {a} \: + \: {6} \: \times \: {-2} \: \: = \: \: {-4}

\: \: \: \: \: \leadsto \: \: {a} \: - \: {-12} \: \: = \: \: {-4}

\: \: \: \: \: \leadsto \: \: {a} \: \: = \: \: {-4} \: + \: {12}

\: \: \: \: \: \leadsto \: \: {a} \: \: = \: \: {8}

Therefore,

  • first term, a = 8
  • common difference, d = -2

✰ Let the nth term be a + (n - 1) d

Then, by putting the value of a and d.

\: \: \: \: \: \leadsto \: \: {a_{n}} \: \: = \: \: {a} \: + \: {( n \: - \: 1)} \: d

\: \: \: \: \: \leadsto \: \: {8} \: + \: {( {n} \: - \: 1)} \: {-2}

\: \: \: \: \: \leadsto \: \: {8} \: + \: {-2n} \: - \: {2}

\: \: \: \: \: \leadsto \: \: {-2n} \: + \: {10}

\: \: \: \: \: \leadsto \: \: {2n} \: \: = \: \: {10}

\: \: \: \: \: \leadsto \: \: {n} \: \: = \: \: \frac{10}{2}

\: \: \: \: \: \leadsto \: \: {n} \: \: = \: \: {5}

\: \: \: \: \: \: \: \: Hence,

\: \: \: \: \: \therefore {nth} \: \: term \: \: is \: \: {5}

______________________________________

______________________________________

Similar questions