Math, asked by thakurvikash3653, 1 year ago

The 90% confidence interval estimate for a population standard deviation when a sample variance of 50 is obtained from a sample of 15 items is

Answers

Answered by CarlynBronk
0

Answer:

Z_{score}=\frac{x-\mu}{\sigma}

\mu=15\\\\ \sigma=\sqrt{Variance}=\sqrt{50}=7.07

Z_{90 percent}=1.645\\\\1.65=\frac{x- 15}{7.07}\\\\ 1.65 \times 7.07=x-15\\\\11.6655=x-15\\\\x=11.67 +15\\\\x=26.67

Total Population = 26 (approx)

So, sample of 15 items is chosen from Population of 26.

Answered by Alcaa
0

90% confidence interval estimate for a population standard deviation is [5.44 , 10.32].

Step-by-step explanation:

We are given that a survey of the age of people denied promotion was conducted. In a random sample of 23 people the average age was 47.0 with a sample standard deviation of 7.2.

Assume this sample comes from a population that is normally distributed.

Firstly, the Pivotal quantity for 90% confidence interval for the population standard deviation is given by;

                           P.Q. =  \frac{(n-1)s^{2} }{\sigma^{2} }  ~ \chi^{2}__n_-_1

where, s^{2} = sample variance = 50

            n = sample of items = 15

            \sigma = population standard deviation

Here for constructing 90% confidence interval we have used One-sample chi-square test statistics.

So, 90% confidence interval for the population standard deviation, \sigma is ;

P(6.57 < \chi^{2}__1_4 < 23.68) = 0.90  {As the critical value of chi at 14 degree

                                                     of freedom are 6.57 & 23.68}  

P(6.57 < \frac{(n-1)s^{2} }{\sigma^{2} } < 23.68) = 0.90

P( \frac{ 6.57}{(n-1)s^{2}} < \frac{1}{\sigma^{2} } < \frac{ 23.68 }{(n-1)s^{2}} ) = 0.90

P( \frac{(n-1)s^{2}}{23.68} < \sigma^{2} < \frac{(n-1)s^{2}}{6.57} ) = 0.90

90% confidence interval for \sigma^{2} = [ \frac{(n-1)s^{2}}{23.68} , \frac{(n-1)s^{2}}{6.57} ]

                                                   = [ \frac{14 \times 50}{23.68} , \frac{14 \times 50}{6.57} ]

                                                   = [29.56 , 106.54]

90% confidence interval for \sigma  = [ \sqrt{29.56} , \sqrt{106.54} ]

                                                   = [5.44 , 10.32]

     

Therefore, 90% confidence interval estimate for a population standard deviation is [5.44 , 10.32].

Similar questions