Math, asked by kunalchauhan602, 3 months ago

The AB distance between two points A(3,7) and B(-2, 7) is

25

5

1​

Answers

Answered by kailashmannem
48

 \huge{\bf{\green{\mathfrak{\dag{\underline{\underline{Question:-}}}}}}}

 \bullet{\longmapsto} The distance between two points A(3,7) and B(-2, 7) is

  • 25

  • 5

  • 1

 \huge {\bf{\orange{\mathfrak{\dag{\underline{\underline{Answer:-}}}}}}}

 \bullet{\leadsto} \: \textsf{Given points :- A(3,7) and B(- 2,7).}

 \bullet{\leadsto} \: \textsf{Distance between them = }

 \bullet{\leadsto} \: \textsf{We know that,}

 \bullet{\leadsto} \: \boxed{\pink{\sf Distance \: Formula \: = \: \sqrt{(x_{2} \: - \: x_{1})^{2} \: + \: (y_{2} \: - \: y_{1})^{2}}}}

 \bullet{\leadsto} \: \textsf{Substituting the values,}

 \bullet{\leadsto} \: \sf \sqrt{(- \: 2 \: - \: 3)^{2} \: + \: (7 \: - \: 7)^{2}}

 \bullet{\leadsto} \: \sf \sqrt{(- \: 5)^{2} \: + \: (0)^{2}}

 \bullet{\leadsto} \: \sf \sqrt{25 \: + \: 0}

 \bullet{\leadsto} \: \sf \sqrt{25}

 \bullet{\leadsto} \: \underline{\boxed{\purple{\sf 5 \: units.}}}

 \huge{\bf{\red{\mathfrak{\dag{\underline{\underline{Conclusion:-}}}}}}}

 \bullet{\longmapsto} \: \boxed{\therefore{\sf Distance \: between \: A(3,7) \: and \: B(- \: 2,7) \: = \: 5 \: units.}}

Answered by abhishek917211
3

explanation:

|AB| = √[(-2-3)^2 + (7-7)^2]

=√(25)

=5

Similar questions