Math, asked by nos13333, 4 hours ago

The above answer is correct ?
If wrong mention the correct answer .​

Attachments:

Answers

Answered by Yourbaklolmaster
2

Answer:

I think there is some think which i can't understand in this Q

Step-by-step explanation:

In 2nd last step what u did with 2absin©cos©

if y =acos© - bsin© is wriiten in place of acos©+bsin© then we can solve questions but i think there is some mistake

Maybe I'm wrong please check questions once again

Answered by mathdude500
4

\large\underline{\sf{Given  \: appropriate\:Question - }}

If

 \sf \: x = asin\theta  + bcos\theta  \: and \: y = acos\theta  - bsin\theta ,

 \sf \: prove \: that  \:  \:  \: {x}^{2} +  {y}^{2} =  {a}^{2} +  {b}^{2}

 \red{\large\underline{\sf{Solution-}}}

Given that,

\rm :\longmapsto\:x = asin\theta  + bcos\theta

So,

\rm :\longmapsto\: {x}^{2}  =  ({ asin\theta  + bcos\theta})^{2}

\rm :\longmapsto\: {x}^{2} =  {(asin\theta )}^{2} +  {(bsin\theta )}^{2}  + 2(asin\theta )(bcos\theta )

\rm :\longmapsto\: {x}^{2} =  {a}^{2} {sin}^{2}\theta  +  {b}^{2} {cos}^{2}\theta  + 2absin\theta cos\theta  -  -  - (1)

Now, Given that

\rm :\longmapsto\:y = acos\theta  - bsin\theta

So,

\rm :\longmapsto\: {y}^{2} =  {(acos\theta  - bsin\theta )}^{2}

\rm :\longmapsto\: {y}^{2} =  {(acos\theta )}^{2} +  {(bsin\theta )}^{2} - 2(acos\theta )(bsin\theta )

\rm :\longmapsto\: {y}^{2} =  {a}^{2} {cos}^{2}\theta  +  {b}^{2} {sin}^{2}\theta  - 2absin\theta cos\theta  -  -  - (2)

So,

\red{\rm :\longmapsto\: {x}^{2} +  {y}^{2}}

\rm \:= {a}^{2} {sin}^{2}\theta  +  {b}^{2} {cos}^{2}\theta  + 2absin\theta cos\theta  +  {a}^{2} {cos}^{2}\theta  +  {b}^{2} {sin}^{2}\theta  - 2absin\theta cos\theta

\rm \:= {a}^{2} {sin}^{2}\theta  +  {b}^{2} {cos}^{2}\theta  +  {a}^{2} {cos}^{2}\theta  +  {b}^{2} {sin}^{2}\theta

\rm \:= {a}^{2} {sin}^{2}\theta  +  {a}^{2} {cos}^{2}\theta  +  {b}^{2} {cos}^{2}\theta  +  {b}^{2} {sin}^{2}\theta

\rm \:= {a}^{2} ({sin}^{2}\theta  + {cos}^{2}\theta)+{b}^{2}({cos}^{2}\theta+ {sin}^{2}\theta)

\rm \:  =  \:  {a}^{2} +  {b}^{2}

Hence,

 \red{ \boxed{ \bf \: {x}^{2}   +  {y}^{2} =  \:  {a}^{2} +  {b}^{2} }}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions