Math, asked by suryvanshiwarriors, 7 months ago

the absolute minimum value of f(x) =to 2 sin x in[0, 3 pie/ 2] is​

Answers

Answered by queen1234516
12

Answer:

answer is 1

plz thank my answer....

Answered by Manmohan04
14

Given,

\[f\left( x \right) = 2\sin x,\left[ {0,\frac{{3\pi }}{2}} \right]\]

Solution,

Calculate the absolute minimum value.

\[\begin{array}{l}f\left( x \right) = 2\sin x\\ \Rightarrow f'\left( x \right) = 2\cos x\end{array}\]

For maximum and minimum,

\[\begin{array}{l}f'\left( x \right) = 0\\ \Rightarrow 2\cos x = 0\\ \Rightarrow \cos x = \cos \frac{\pi }{2}\\ \Rightarrow x = \frac{\pi }{2},\frac{{3\pi }}{2}\end{array}\]

Calculate the value of function at \[0,\frac{\pi }{2},\frac{{3\pi }}{2}\].

\[\begin{array}{l}f\left( x \right) = 2\sin x\\ \Rightarrow f\left( {x = 0} \right) = 2\sin 0\\ \Rightarrow f\left( {x = 0} \right) = 0\end{array}\]

\[\begin{array}{l}f\left( x \right) = 2\sin x\\ \Rightarrow f\left( {x = \frac{\pi }{2}} \right) = 2\sin \frac{\pi }{2}\\ \Rightarrow f\left( {x = \frac{\pi }{2}} \right) = 2\end{array}\]

\[\begin{array}{l}f\left( x \right) = 2\sin x\\ \Rightarrow f\left( {x = \frac{{3\pi }}{2}} \right) = 2\sin \frac{{3\pi }}{2}\\ \Rightarrow f\left( {x = \frac{{3\pi }}{2}} \right) =  - 2\end{array}\]

Absolute minimum value is \[ - 2\].

Similar questions