Physics, asked by KIRTIRAJ87101, 10 months ago

The acceleration 'a' for a particle depends on displacement s
as a = 5 + s. At t=0,5 = 0 and
velocity v = 5. Then the velocity V, corresponding to displacement s is given by
(a) v = 5+s
(b) V= under root(5+s ).
(c) v = under root(s square+10s)
(d) v = s - 5​

Answers

Answered by pulakmath007
38

\displaystyle\huge\red{\underline{\underline{Solution}}}

GIVEN

  • The acceleration 'a' for a particle depends on displacement s as a = 5 + s.

  • At t = 0 , s = 0 and velocity v = 5

TO DETERMINE

The velocity v corresponding to displacement s

CALCULATION

 \sf{Acceleration \:  =  \:  a = 5+ s}

 \displaystyle \sf{v \frac{dv}{ds}  = 5 + s \:  \: }

  \implies \: \displaystyle \sf{v dv  = 5ds + s. ds\:  \: }

On integration

 \displaystyle \sf{ \frac{ {v}^{2} }{2}   = 5s +  \frac{ {s}^{2} }{2}  +  \frac{c}{2} } \:  \:  \:  \: ( \: where \:  \frac{c}{2}  \: is \: constant \: )

 \implies \:  \displaystyle \sf{ {v}^{2}  = 10s +  {s}^{2}  + c } \:  \:  \:  \: ....(1)

Now At t = 0 , s = 0 and velocity v = 5

So

 \sf{ \: 25 = 0 + 0 + c \: }

 \implies \:  \sf{ c = 25\:  \: }

From Equation (1)

  \:  \displaystyle \sf{ {v}^{2}  = 10s +  {s}^{2}  + 25 } \:  \:  \:  \:

 \implies \:   \:  \displaystyle \sf{ {v}^{2}  =   {s}^{2}  + 10s + 25 } \:  \:  \:  \:

 \implies \:   \:  \displaystyle \sf{ {v}^{2}  =   {s}^{2}  + 2 \times s \times 5 + 25 } \:  \:  \:  \:

 \implies \:   \:  \displaystyle \sf{ {v}^{2}  =   {(s + 5)}^{2}  } \:  \:  \:  \:

 \implies \:   \:  \displaystyle \sf{v = s + 5 } \:  \:  \:  \:

 \implies \:   \:  \displaystyle \sf{v =5 +  s  } \:  \:  \:  \:

RESULT

Hence the velocity is given by

 \boxed{ \:   \:  \displaystyle \sf{v =5 +  s  } \:  \:  \:  \: }

Answered by prachikalantri
0

The correct option is A

Here a=s+5

So, \frac{dv}{dt}=s+5

or \frac{dv}{ds} \frac{ds}{dt}  =s+5

or \frac{dv}{ds}v=s+5(as \frac{ds}{dt} =v)

Or  vdv=(s+5)ds

Integrating both sides, \int\limits vdv=\int\limits (s+5)ds

or \frac{v^2}{2}=\fracs^2}{2}+5s+C where C is integrating constant

when S=0, v=5, C=\frac{25}{2}

so, \frac{v^2}{2}=\frac{s^2}{2}+5s+\frac{25}{2} or v^2=s^2+10s+25

or v^2=(s+5)^2

Or v=s+5

#SPJ2

Similar questions