Physics, asked by HarshithRana99, 10 days ago

The acceleration 'a' in m/s^2 of a particle is given by a= 3t^2+2t+2 where t is the time. If the particle starts out with a velocity u = 2m/s at t = 0, then the velocity at the end of 2 second will be ? ​

Answers

Answered by RISH4BH
500

Need to FinD :-

  • The velocity at the end of 2 seconds .

\red{\frak{Given}}\begin{cases}\sf The \ accl^n \ of \ particle \ is \ a \ = \ 3t^2+2t + 2 .\\\textsf{ The particle starts out with a velocity u = 2m/s at t = 0 } \end{cases}

We know the acceleration is the rate of change of velocity . So , that ,

\sf\dashrightarrow \dfrac{dv}{dt}= a

Now transposing dt to RHS , we have ,

\sf\dashrightarrow dv = a . dt \\\\\sf\dashrightarrow \displaystyle \sf\int dv = \int a . dt  \\\\\sf\dashrightarrow \displaystyle\sf \int (3t^2+2t+2) .dt = \int dv

Let the velocity at the end of 2 s be v . Therefore the upper limit of dv will be v and lower limit will be 2 . Also time will be integrated from t = 0 to t = 2 s . Putting the limits , we have ,

 \dashrightarrow \displaystyle\sf \int_0 ^2 (3t^2+2t+2) .dt = \int_2^v dv  \\\\\sf\dashrightarrow \displaystyle\sf (v-2) = \bigg[ \dfrac{3t^{2+1}}{2+1} + \dfrac{2t^{1+1}}{1+1} + 2t \bigg] ^2_0 \\\\\dashrightarrow \displaystyle \sf (v - 2) = \bigg[ \dfrac{3t^3}{3}+\dfrac{2t^2}{2}+ 2t\bigg]_0^2 \\\\\dashrightarrow \sf (v-2) = [ t^3 + t^2 + 2t]^2_0 \\\\\sf\dashrightarrow (v -2) = 2^3 + 2^2 +2(2) - 0 \\\\\sf\dashrightarrow (v-2) = 8 + 4 + 4 - 0 \\\\\sf\dashrightarrow (v - 2) = 16 \\\\\sf\dashrightarrow v = ( 16 + 2) m/s \\\\\sf\dashrightarrow \underset{\blue{\sf Required\ velocity}}{\underbrace{\boxed{\pink{\frak{ Velocity_{(At\ end\ of \ 2s)}= 18m/s }}}}}


MystícPhoeníx: Splendid !
Anonymous: Great!
Answered by AbhinavRocks10
22

Explanation:

\Large\boxed{\sf{(b)\quad\!18\ m\ s^{-1}}}

Given, acceleration as a function in time (in \sf{m\ s^{-2}}

. Then,

\longrightarrow\sf{\dfrac{dv}{dt}=3t^2+2t+2}

\longrightarrow\sf{dv=(3t^2+2t+2)\ dt}⟶dv=(3t 2)

Now we have to integrate both sides.

Integration should be done for a time from t = 0 seconds to t = 2 seconds.

Integration should be done for a velocity from v = u = 2 \sf{m\ s^{-1}}m s

  • where v is the velocity at the time t = 2 seconds.

So,

\displaystyle\longrightarrow\sf{\int\limits_2^vdv=\int\limits_0^2(3t^2+2t+2)\ dt}

\displaystyle\longrightarrow\sf{\big[v\big]_2^v=\int\limits_0^23t^2\ dt+\int\limits_0^22t\ dt+\int\limits_0^22\ dt}⟶[v]

\displaystyle\longrightarrow\sf{v-2=3\int\limits_0^2t^2\ dt+2\int\limits_0^2t\ dt+2\int\limits_0^2\ dt}

\displaystyle\longrightarrow\sf{v-2=3\left[\dfrac{t^3}{3}\right]_0^2+2\left[\dfrac{t^2}{2}\right]_0^2+2\big[t\big]_0^2}

\displaystyle\longrightarrow\sf{v-2=3\cdot\dfrac{2^3-0^3}{3}+2\cdot\dfrac{2^2-0^2}{2}+2(2-0)}

\displaystyle\longrightarrow\sf{v-2=8-0+4-0+2\times2}

\displaystyle\longrightarrow\sf{v-2=8+4+4}

\displaystyle\longrightarrow\sf{v-2=16}⟶v−2=16

\tt ⟶ v=18 m s −1

Similar questions