the acceleration due to gravity of planet in g upon 8 . if the radius is half of earths radius. then the ratio mass of planet to mass of earth is
1 : 32
1 : 8
1 : 16
1 : 64
Answers
Answer :-
The ratio of mass of the planet to mass of Earth is 1 : 32 . [Option.1]
Explanation :-
For Earth :-
• Mass = Mₑ
• Radius = r
• Acceleration due to gravity = g
So the equation for acceleration due to gravity becomes :-
⇒ g = GMₑ/r²
⇒ gr² = GMₑ ------(1)
For the other planet :-
• Mass = Mₚ
• Radius = r/2
• Acceleration due to gravity = g/8
The equation for acceleration due to gravity :-
⇒ g/8 = GMₚ/(r/2)²
⇒ g/8 = 4GMₚ/r²
⇒ g(r)² = 8(4GMₚ)
⇒ gr² = 32GMₚ -----(2)
________________________________
On dividing eq.2 by eq.1, we get :-
⇒ gr²/gr² = 32GMₚ/GMₑ
⇒ 1 = 32Mₚ/Mₑ
⇒ Mₑ = 32Mₚ
⇒ Mₚ = Mₑ/32
⇒ Mₚ : Mₑ = 1 : 32
Given :-
the acceleration due to gravity of planet in g upon 8 . if the radius is half of earths radius.
To Find :-
Mass of planet to earth
Solution :-
Let us assume that
Mass of Earth = M
Mass of Planet = M'
Since, acceleration due to gravity of planet id g/8
So,
For other planet
Radius = Radius of Earth/2
g/8 = GM'/[r/2]²
g/8 = GM'/r²/4
g/8 = GM'/r² × 4
g/8 = 4GM'/r²
g × r² = 8 × 4GM'
gr² = 32GM'
For Earth
g = GM/r²
g × r² = GM
gr² = GM
gr²/gr² = 32GM'/GM
g/g = 32GM'/GM
1 = 32GM'/GM
1 = 32M'/M
1(M) = 32M'
M = 32M'
M/32M'
Ratio = 1:32