The acceleration due to gravity on the surface of a planet whose mass is same as that of the earth and radius is half of that of the earth is: (mass of earth=6×10²⁴kg, radius of earth=6.4×10³km)
A) 35.08m/s²
B) 39.08m/s²
C) 28.08m/s²
D) 9.08m/s²
E) None of these
Answers
Answered by
2
Given data :
- mass of the planet = mass of the earth
- radius of the planet = ½ radius of the planet
- acceleration of the planet = ?
Solution : a/c to question;
- mass of the earth = 6 * 10²⁴ kg
- radius of the earth = 6.4 * 10³ km
Now, by formula of acceleration due to gravity,
- g = GM/R² ----{1}
Where,
- g is acceleration due to gravity of planet. {earth}
- G is gravitational constant {6.673 * 10^( - 11 ) Nm²/kg²}
- M is mass of the earth
- R is radius of the earth
Now, a/c to given data;
eq. {1} becomes;
⟹ g = GM/{½ R}²
⟹ g = {6.673 * 10^( - 11 ) * 6 * 10²⁴}/{½ * 6.4 * 10³}²
⟹ g = 40.038 * 10¹³/{3.2 * 10³}²
⟹ g = 40.038 * 10¹³/10.24 * 10⁶
⟹ g = 3.9099 * 10⁷ m/s²
⟹ g = 39.099 * 10⁶ m/s²
Answer : Hence, the acceleration due to gravity on the surface of a planet is 39.099 * 10⁶ m/s².
Learn more :
If a body's weight is 36 kg on the surface of the earth, how much would it
weight on the surface of a planet whos...
https://brainly.in/question/39851497
The escape velocity of a body from the earth is 11.2km/s. If the radius of the planet be half the radius of earth and it...
https://brainly.in/question/48303583
Similar questions
Geography,
9 days ago
India Languages,
9 days ago
Math,
19 days ago
Math,
19 days ago
Science,
9 months ago