The acceleration due to gravity on the surface of moon is 1.7 ms-2. What is the time period of
a simple pendulum on the moon if it time period is 3.5 s on earth
Answers
Answered by
18
On earth T=3.5 S
g=9.8 m/s²
T=2π√(l/g)
3.5=2π√(l/9.8)
On moon :
T1=?
g1=1.7 m/s²
T1=2π√(l/g)
=2π√(l/1.7)
⇒T1/3.5=√(9.8/1.7)
T1=240x3.5=8.4sec
g=9.8 m/s²
T=2π√(l/g)
3.5=2π√(l/9.8)
On moon :
T1=?
g1=1.7 m/s²
T1=2π√(l/g)
=2π√(l/1.7)
⇒T1/3.5=√(9.8/1.7)
T1=240x3.5=8.4sec
Answered by
8
On Earth
---------------------------------
T = 2π √ l/g
-------------
we know that T = 3.5 s
3.5 = 2π √ l/g
taking sq on both sides
(3.5)² = (2π)² x l/g
T²
l = ----------- x g
(2π)²
(3.5)²
l = --------- x 9.8
(6.28)²
solving this we get length = 3.04 m
-------------------------------
on moon substituting the length in the time period formula we get
T = 2π √ l/g
T = 2π ( √ 3.04/1.7)
T = 2π (√1.7)
T = 6.28 x 1.33
T = 8.35 s
----------------------------------------------------------------------------------------
Therefore the time period of a simple pendulum on the surface of moon will be 8.35 s or approximately = 8.4 s
---------------
---------------------------------
T = 2π √ l/g
-------------
we know that T = 3.5 s
3.5 = 2π √ l/g
taking sq on both sides
(3.5)² = (2π)² x l/g
T²
l = ----------- x g
(2π)²
(3.5)²
l = --------- x 9.8
(6.28)²
solving this we get length = 3.04 m
-------------------------------
on moon substituting the length in the time period formula we get
T = 2π √ l/g
T = 2π ( √ 3.04/1.7)
T = 2π (√1.7)
T = 6.28 x 1.33
T = 8.35 s
----------------------------------------------------------------------------------------
Therefore the time period of a simple pendulum on the surface of moon will be 8.35 s or approximately = 8.4 s
---------------
Similar questions
History,
8 months ago
Science,
8 months ago
Math,
1 year ago
English,
1 year ago
Social Sciences,
1 year ago