Physics, asked by shivanirishik, 8 hours ago

The acceleration of a particle in m/s2 is given by a = 4t 2+2t+2, where time t is in second. If the particle starts with a velocity v = 2 m/s at t=0, find the velocity at t = 5 s.

Answers

Answered by Anonymous
44

Answer:

• The acceleration of a particle in m/s2 is given by a = 4t²+2t+2, where time t is in second. The particle starts with a velocity v = 2 m/s at t=0.

• Acceleration:

\implies \sf a = 4t^2 + 2t + 2

\implies \sf a =  \dfrac{dv}{dt}

\implies \sf dv =  a.dt

•Integrating both the sides:

\displaystyle\implies \sf  \int\limits_{u}^{v}dv =   \int\limits_{0}^{t}a.dt  \\

\displaystyle\implies \sf  v - u =   \int\limits_{0}^{t = 5}( {4t}^{2}  + 2t + 2).dt  \\

\displaystyle\implies \sf  v - 2 =   \int\limits_{0}^{t = 5}( {4t}^{2}  + 2t + 2).dt  \\

\displaystyle\implies \sf  v - 2 = \left.  \bigg\{\dfrac{ {4t}^{3} }{3}   + \dfrac{ {2t}^{2} }{2}  + 2t\bigg\}\right| _{0}^{5}  \\

\displaystyle\implies \sf  v - 2 = \left.  \bigg\{\dfrac{ {4t}^{3} }{3}   +  {t}^{2}   + 2t\bigg\}\right| _{0}^{5}   \\

\displaystyle\implies \sf  v - 2 =  \bigg\{ \bigg(\dfrac{ {4(5)}^{3} }{3}  - \dfrac{ {4(0)}^{3} }{3}  \bigg) + ( {5}^{2} -  {0}^{2} )   + (2 \times 5 - 2 \times 0)\bigg \}

\displaystyle\implies \sf  v - 2 =   \dfrac{ 500 }{3}   + 25   + 10  \\

\displaystyle\implies \sf  v =   \dfrac{ 500 }{3}   + 25   + 10  + 2 \\

\displaystyle\implies \sf  v =   \dfrac{ 500 }{3}   +37 \\

\displaystyle\implies \sf  v =   \dfrac{ 500  + 111}{3}   \\

\displaystyle\implies \sf  v =   \dfrac{ 611}{3}   \\

\displaystyle\implies \underline{ \boxed{ \orange{ \bf  v =   203.67 \:   m/s}}}\\

Similar questions