Physics, asked by jayamarasani1729, 3 months ago

The acceleration of a particle is directly proportional to the square of the time t. When t 0, the particle is at x 24 m. Knowing that at t 6 s, x 96 m and v 18 m/s, express x and v in terms of t

Answers

Answered by nirman95
1

Given:

The acceleration of a particle is directly proportional to the square of the time t. When t=0, the particle is at x=24 m. Knowing that at t=6 s, x = 96 m and v= 18 m/s,

To find:

To express x and v in term t ?

Calculation:

 \rm \: a \propto {t}^{2}

 \rm \implies \: a = k{t}^{2}

  \implies \: \displaystyle \rm  \int_{0}^{18} dv = k \int_{0}^{6}{t}^{2}  \: dt

  \implies \: \displaystyle \rm 18 = k  \times  \dfrac{216}{3}

  \implies \: \displaystyle \rm 18 = k  \times  72

  \implies \: \displaystyle \rm  k   =  \dfrac{1}{4}

______________________

  \implies \: \displaystyle \rm  \int dv = k \int{t}^{2}  \: dt

  \implies \: \displaystyle \rm  v =  \dfrac{k {t}^{3} }{3}  + c

  \implies \: \displaystyle \rm  v =  \dfrac{ {t}^{3} }{12}  + c

At t = 6, value of v = 18, hence c = 0.

  \boxed{ \implies \: \displaystyle \rm  v =  \dfrac{ {t}^{3} }{12} }

 \implies \: \displaystyle \rm  dx=  \dfrac{ {t}^{3} }{12}  \: dt

 \implies \: \displaystyle \rm \int  dx= \int  \dfrac{ {t}^{3} }{12}  \: dt

 \implies \: \displaystyle \rm x=   \dfrac{ {t}^{4} }{48}   + c

When t = 0, x = 24 , hence c = 24.

 \boxed{ \implies \: \displaystyle \rm x=   \dfrac{ {t}^{4} }{48}   + 24}

Hope It Helps.

Similar questions