Physics, asked by Arceuzvx, 6 months ago

The acceleration of a particle is given by a = (4t + 9) ms^-2. Then find the displacement of the particle at t = 2 s, if at t = 0 the particle starts from origin with a velocity of 3 ms^-1.

A) 88/3 m
B) 7/9 m
C) 88/9 m
D) 77/18 m​

Answers

Answered by Anonymous
69

Topic :- Motion in straight line

\maltese\:\underline{\sf AnsWer :}\:\maltese

Given that,the Acceleration (a) of a particle is given by = (4t + 9) m/s². At t = 0 the particle starts from origin with a initial velocity (u) = 3 m/s. We are asked to find the displacement of the particle at t = 2 s.

First of all we need to find the final velocity (v) of the given particle. Acceleration (a) of any particle can be calculated by the given below formula :

\longrightarrow\:\:\sf a = \dfrac{dv}{dt} \\

\longrightarrow\:\:\sf a.dt = dv\\

Now, by integrating both the sides we get :

\longrightarrow \:  \: \displaystyle \sf \int\limits_{0}^{t} a.dt  =\int\limits_{v}^{u} dv \\

\longrightarrow \:  \: \displaystyle \sf \int\limits_{0}^{t} (4t + 9)  \: dt=v - u \\

\longrightarrow \:  \:\displaystyle \sf v - u  =  \int\limits_{0}^{t} (4t + 9)  \: dt \\

\longrightarrow \:  \:\displaystyle \sf v - 3  =  \int\limits_{0}^{t}\dfrac{4 {t}^{1 + 1} }{1 + 1} +   \int\limits_{0}^{t}  9t +\int\limits_{0}^{t}C  \\

\longrightarrow \:  \:\displaystyle \sf v - 3  =  \int\limits_{0}^{t}\dfrac{4 {t}^{2} }{2} +   \int\limits_{0}^{t}  9t +\int\limits_{0}^{t}C  \\

\longrightarrow \:  \:\displaystyle \sf v - 3  =\Bigg[\dfrac{4 {t}^{2} }{2}\Bigg]^{t}_{0}  +  \Bigg[ 9t \Bigg]^{t}_{0} +\Bigg[C\Bigg]^{t}_{0}  \\

By eliminating "C" because it is constant.

\longrightarrow \:  \:\displaystyle \sf v - 3  =\Bigg[\dfrac{4 {t}^{2} }{2}\Bigg]^{t}_{0}  +  \Bigg[ 9t \Bigg]^{t}_{0}  \\

\longrightarrow \:  \:\displaystyle \sf v - 3  =\Bigg[\dfrac{4 {(t)}^{2} }{2} -\dfrac{4 {(0)}^{2} }{2} \Bigg]  +  \Bigg[ 9(t) - 9(0)\Bigg]  \\

\longrightarrow \:  \:\displaystyle \sf v - 3  =\Bigg[\dfrac{4 {t}^{2} }{2} -0\Bigg]  +  \Bigg[ 9t- 0\Bigg]  \\

\longrightarrow \:  \:\displaystyle \sf v - 3  =\dfrac{4 {t}^{2} }{2} +  9t \\

\longrightarrow \:  \:\displaystyle \sf v - 3  = {2t}^{2} +  9t \\

\longrightarrow \:  \:\displaystyle \sf v   = {2t}^{2} +  9t  + 3\\

We have find the final velocity (v). Now, let's find the Displacement "x" of the given particle :

\dashrightarrow\:\:\sf v = \dfrac{dx}{dt}

\dashrightarrow\:\:\sf v.dt = dx \\

\dashrightarrow\:\:\sf dx = v.dt  \\

Integrating both the sides we have :

\dashrightarrow\: \: \sf\displaystyle \sf \int\limits_{0}^{x}  dx =\int\limits_{0}^{2} (2 {t}^{2}  + 9t + 3) \: dt \\

\dashrightarrow\: \: \sf x=\int\limits_{0}^{2} 2 {t}^{2}  +\int\limits_{0}^{2} 9t  + \int\limits_{0}^{2} 3 +\int\limits_{0}^{2} C \\

\dashrightarrow\: \: \sf x=\int\limits_{0}^{2}  \dfrac{ {2t}^{2 + 1} }{2 + 1}  +\int\limits_{0}^{2} \dfrac{ {9t}^{1 + 1} }{1 + 1}  + \int\limits_{0}^{2} 3t +  \int\limits_{0}^{2}C\\

\dashrightarrow\: \: \sf x=\int\limits_{0}^{2}  \dfrac{ {2t}^{3} }{3}  +\int\limits_{0}^{2} \dfrac{ {9t}^{2} }{2}  + \int\limits_{0}^{2} 3t  + \int\limits_{0}^{2}C\\

Eliminating "C" as it is a constant.

\dashrightarrow\: \: \sf x=\Bigg[ \dfrac{ {2t}^{3} }{3}\Bigg]^2_0  +\Bigg[ \dfrac{ {9t}^{2} }{2}  \Bigg]^2_0+  \Bigg[3t \Bigg]^2_0\\

\dashrightarrow\: \: \sf x=\Bigg[ \dfrac{ {2(2)}^{3} }{3} - \dfrac{ {2(0)}^{3} }{3}\Bigg]  +\Bigg[ \dfrac{ {9(2)}^{2} }{2}  - \dfrac{ {9(0)}^{2} }{2}  \Bigg]+  \Bigg[3(2) - 3(0) \Bigg]\\

\dashrightarrow\: \: \sf x=\Bigg[ \dfrac{ {2 \times 8} }{3} - 0\Bigg]  +\Bigg[ \dfrac{ 9 \times 4 }{2}  - 0  \Bigg]+  \Bigg[6- 0 \Bigg]\\

\dashrightarrow\: \: \sf x =\dfrac{{16} }{3}  + \dfrac{36}{2} + 6\\

\dashrightarrow\: \: \sf x =\dfrac{{16} }{3}  + 18+ 6\\

\dashrightarrow\: \: \sf x =\dfrac{{16} }{3}  + 24\\

\dashrightarrow\: \: \sf x =\dfrac{{16 + 24 \times 3} }{3}  \\

\dashrightarrow\: \: \sf x =\dfrac{{16 + 72} }{3}  \\

\dashrightarrow\: \: \underline{ \boxed{ \sf x =\dfrac{{88} }{3}}}  \\

Hence,the displacement of the particle at t = 2 s is x = 88/3. Hence option (A) is the correct answer.

Similar questions