Physics, asked by iamvivekyadav, 9 months ago

The acceleration of a particle is given by a=t³-3t²+5, where a is in m/s² and t is in seconds. At t=1s, the displacement and velocity are 8.30m and 6.25m/s, respectively. Calculate the displacement and velocity at t=2s.​

Answers

Answered by pruthapatel0911
1

Answer:

HOPE IT HELPS YOU!!!

AND IF YOU LIKE THER ANSWER SO PLEASE MARKA ME AS BRAINLIEST!!!

AND ON DIFFERENTIATING THE VELOCITY YOU WILL GET DISPLACNMENT !!!!

Attachments:
Answered by Mysterioushine
27

GIVEN :-

  • Acceleration of a particle is given by a = t³ - 3t² + 5
  • At t = 1sec , The displacement and velocity are 8.30m and 6.25m/s

TO FIND :-

  • Displacement and velocity at t = 2sec

SOLUTION :-

The relation between velocity and acceleration is given by ,

 \large {\underline {\bold {\boxed { \sf{\bigstar  | \: a =  \dfrac{dv}{dt} }}}}}

We have ,

  • a = t³ - 3t² + 5

 \implies \sf a =  \dfrac{dv}{dt} \\  \\  \implies \sf \: a.dt = dv

Integrating on both sides ,

 \implies \sf \:  \int  a  \: dt =  \int \: dv \\  \\  \implies \sf \:  \int \: a \: dt = v \\  \\  \implies \sf \: v =  \int \: ( {t}^{3}  - 3 {t}^{2}  + 5) \: dt

 \large  {\underline{\bold {\boxed { \sf{\bigstar \:  \int (u + v )dx =  \int u  \: dx +  \int v \: dx}}}}}

 \large  \underline{\bold {\boxed {\sf {\bigstar \:   \int {x}^{n}  \: dx =  \dfrac{ {x}^{n + 1} }{n + 1} }}}}

 \implies \sf \: v =  \int  ( {t}^{3})  \: dt \:  -  \int \: (3 {t}^{2})    \: dt +  \int  (5) \: dt \\  \\  \large  \underline{\bold {\boxed {\sf {\bigstar \:  \int f(x) \: dx = g(x) + c}}}}\\  \\   \implies \sf \: v =  \frac{ {t}^{3 + 1} }{(3 + 1)}  -  \frac{3 {t}^{(2 + 1)} }{2 + 1}  + 5t + c_1 \\  \\  \implies \sf  \: v =  \frac{ {t}^{4} }{4}  -  \frac{3 {t}^{3} }{3}  + 5t + c_1 \\  \\  \implies \sf \: v =  \frac{ {t}^{4} }{4}  -  \frac{ \cancel{3} {t}^{3} }{ \cancel{3}}  + 5t + c_1 \\  \\  \implies  \:   {\sf {\pink{   v=  \frac{ {t}^{4} }{4}  -  {t}^{3}  + 5t + c_1}}}

We are given that ,

  • Velocity at t = 1 sec is 6.25 m/s

 \implies \sf \: 6.25 =  \frac{(1) {}^{4} }{4}  -  {(1)}^{3}  + 5(1) + c_1 \\  \\  \implies \sf \: 6.25 =  \frac{1}{4}  - 1 + 5 + c_1 \\  \\  \implies \sf \: 6.25 =  \frac{1  +  4( - 1 + 5 + c_1)}{4}  \\  \\  \implies \sf \: 6.25 \times 4 = 1   -  4  +  20 - 4c_1 \\  \\  \implies \sf \: 25 =  17  + 4c_1 \\  \\  \implies \sf \: 25 - 17 = 4c_1 \\  \\  \implies \sf \: 8 = 4c_1  \\  \\  \implies \sf \:  c_1 =  \frac{8}{4}  \\  \\  \implies {\bold {\boxed {\pink {\sf{c_1 = 2}}}}}

Then velocity is ,

 \implies {\bold {\boxed {\pink {\sf{v =  \frac{ {t}^{4} }{4}   -  {t}^{3}  + 5t + 2}}}}}

At t = 2s ,

 \implies \sf \: v =  \frac{(2) {}^{4} }{4}  -  {(2)}^{3}  + 5(2) + 2 \\  \\  \implies \sf \: v =  \frac{16}{4}  - 8 + 10 + 2 \\  \\  \implies \sf \: v = 4 - 8 + 10 + 2 \\  \\  \implies \sf \: v =  - 8+ 16 \\  \\  \implies {\underline {\bold {\boxed {\blue {\sf{v = 8 \: ms {}^{ - 1} }}}}}}

Relation between displacement and velocity is given by ,

 \large \bold {\boxed {\sf {\bigstar  | \: v =  \frac{dx}{dt} }}}

 \implies \sf \: v \: dt = dx

Integrating on both sides ,

 \implies \sf \:  \int v \: dt =  \int dx \\  \\  \implies \sf  x =  \int  v \: dt \\  \\  \implies \sf \:  x =  \int \bigg( \frac{ {t}^{4} }{4} -   {t}^{3}  + 5t  + 2 \bigg) \: dt  \\  \\ \implies \sf \: x =  \int \:  \bigg( \frac{ {t}^{4} }{4}  \bigg) \: dt -  \int \: ( {t}^{3} ) \: dt +  \int (5t) \: dt \:  +  \int \: (2) \: dt \\  \\  \implies \sf \: x =    \bigg( \frac{1}{4}  \bigg)\int \: ( {t}^{4}) \: dt  \:  -  \frac{ {t}^{(3 + 1)} }{3 + 1}  +  \frac{5 {t}^{(1 + 1)} }{1 + 1}  + 2t + c_2  \\  \\  \implies \sf \: x =  \bigg( \frac{1}{4} \bigg) \bigg( \frac{ {t}^{5} }{5}  \bigg)  -  \frac{ {t}^{4} }{4}  +  \frac{5 {t}^{2} }{2 } + 2t + c_2 \\  \\  \implies \sf \pink{ x =  \frac{ {t}^{5} }{20}  -  \frac{ {t}^{4} }{4}  +  \frac{5 {t}^{2} }{2}  + 2t + c_2}

We are given that ,

  • At t = 1s , x = 8.3 m

 \implies \sf \: 8.3 =  \frac{ {(1)}^{5} }{20}  -  \frac{(1) {}^{4} }{4}  +  \frac{5(1) {}^{2} }{2}  + 2(1) + c_2 \\  \\  \implies \sf \: 8.3 =  \frac{1}{20}  -  \frac{1}{4}  +  \frac{5}{2}  + 2 + c_2 \\  \\  \implies \sf \: 8.3 =  0.05 - 0.25 + 2.5 + 2 + c_2 \\  \\  \implies \sf \: 8.3 = 4.3 + c_2 \\  \\  \implies \sf \: 8.3 - 4.3 = c_2 \\  \\  \implies \:   {\bold {\boxed {\pink {\sf{c_2 = 4}}}}}

Then displacement is ,

 \implies {\bold {\boxed {\pink {\sf{x =  \frac{ {t}^{5} }{20}  -  \frac{ {t}^{4} }{4}  +  \frac{5 {t}^{2} }{2}  + 2t + 4}}}}}

At t = 2 sec ,

 \implies \sf \: x =  \frac{(2) {}^{5} }{20}  -  \frac{( 2){}^{4} }{4}  +  \frac{5 {(2)}^{2} }{2}  + 2(2) + 4 \\  \\  \implies \sf \: x =  \frac{32}{20}   -   \frac{16}{4}  +  \frac{20}{2}  + 4 + 4 \\  \\  \implies  \sf\: x =  1.6 - 4 + 10 + 8 \\  \\  \implies \sf \: x = 19.6 - 4 \\  \\  \implies {\underline {\bold {\boxed {\blue {\sf{x = 15.6 \: m}}}}}}

∴ The velocity and displacement at t = 2 sec of the given body are 8 m/s and 15.6 m

Similar questions