The activity of A in a mixture is 0.13 at the mole fraction, x=0.2.The activity coefficient of A will be a)0.026 b)0.65 c)1.54 d)0.13 e)0.04
Answers
Answer:
Explanation:
The properties of electrolyte solutions can significantly deviate from the laws used to derive chemical potential of solutions. In nonelectrolyte solutions, the intermolecular forces are mostly comprised of weak Van der Waals interactions, which have a r−7 dependence, and for practical purposes this can be considered ideal. In ionic solutions, however, there are significant electrostatic interactions between solute-solvent as well as solute-solute molecules. These electrostatic forces are governed by Coulomb's law, which has a r−2 dependence. Consequently, the behavior of an electrolyte solution deviates considerably from that an ideal solution. Indeed, this is why we utilize the activity of the individual components and not the concentration to calculate deviations from ideal behavior. In 1923, Peter Debye and Erich Hückel developed a theory that would allow us to calculate the mean ionic activity coefficient of the solution, γ± , and could explain how the behavior of ions in solution contribute to this constant