Physics, asked by Aasthayadu, 1 year ago

The activity of a radioactive element drops to 1/16th of its initial value in 32 years find the mean life of the sample
(1 mark type question)

Answers

Answered by Sharad001
154

\large{\sf\underline{ \red{\underline{Question }}}}:- \:  \\

→ The activity of a radioactive elements drops to \dfrac{1}{16}th of its initial value in 32 years .find the mean life of the sample .

\large\sf\underline{\underline{Answer }}:- \:  \\   \implies \sf  mean \: life (\tau)  = 11.544 \:  \\ \\ \large\sf\underline{ \green{\underline{To \: Find }}}:- \\    \to \sf mean \: life \: of \: the \: sample \\  \\ \large\sf\underline{ \pink{\underline{Explanation }}}:- \:

Given that :

  • Activity of element \dfrac{1}{16}

  • time (t) = 32 years

We know that ,

→ Activity of a radioactive substances at any time "t" is -

 \implies \sf \red{ N = N_0  \:  }{e}^{ -  \lambda \:t}   \:  \:  \: \\  \\  \implies \sf \frac{N}{N_0}  =  {e}^{ -  \lambda \: t}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \because \boxed{ \sf\frac{N}{N_0} =  \frac{1}{16} } \\  \\ \implies \sf \:   \frac{1}{16}  = {e}^{ -  \lambda \: t} \\  \\  \implies \sf \:  {e}^{  32\lambda \: } = 16 \\  \\   \sf \: taking \:   \log()  \: on \: both \: sides \:  \\  \\  \implies \sf  \log( {e}^{32 \lambda} )  =   \log(16)  \\  \\   \:  \:  \:  \:  \: \because \boxed{ \sf \:   \log( {m}^{n} )  = n \log m} \\  \\  \implies \sf \: 32 \lambda \log e =   \log( {2}^{4} )  \\  \\  \because \boxed{ \sf  \log e = 1} \\  \\  \implies \:  \: 32 \lambda = 4 \log 2 \\  \\  \implies  \boxed{ \sf \: \lambda =  \frac{ \log 2}{8}  \: }

We know that ,

 \to \sf \boxed{ \sf mean \: life \:(\tau)  =  \frac{ 1}{ \lambda} } \\  \\  \to  \sf   \tau=  \frac{ 1}{ \frac{ \log 2}{8} }   \\  \\  \to { \sf \tau =  \frac{8}{ \log 2}  \: } \:  \:  \because \boxed{ \sf \log 2 = 0.693} \\  \\  \to \sf \:  \tau=  \frac{8}{0.693}  \\  \\  \to \boxed{ \sf \tau= 11.544 \: }

Similar questions